Search Results

Now showing 1 - 2 of 2
  • Item
    Polarization lidar: An extended three-signal calibration approach
    (Katlenburg-Lindau : Copernicus, 2019) Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Haarig, Moritz; Schmidt, Jörg; Wandinger, Ulla
    We present a new formalism to calibrate a threesignal polarization lidar and to measure highly accurate height profiles of the volume linear depolarization ratios under realistic experimental conditions. The methodology considers elliptically polarized laser light, angular misalignment of the receiver unit with respect to the main polarization plane of the laser pulses, and cross talk among the receiver channels. A case study of a liquid-water cloud observation demonstrates the potential of the new technique. Long-term observations of the calibration parameters corroborate the robustness of the method and the long-term stability of the three-signal polarization lidar. A comparison with a second polarization lidar shows excellent agreement regarding the derived volume linear polarization ratios in different scenarios: A biomass burning smoke event throughout the troposphere and the lower stratosphere up to 16 km in height, a dust case, and also a cirrus cloud case. © Author(s) 2019.
  • Item
    Network-induced multistability through lossy coupling and exotic solitary states
    ([London] : Nature Publishing Group UK, 2020) Hellmann, Frank; Schultz, Paul; Jaros, Patrycja; Levchenko, Roman; Kapitaniak, Tomasz; Kurths, Jürgen; Maistrenko, Yuri
    The stability of synchronised networked systems is a multi-faceted challenge for many natural and technological fields, from cardiac and neuronal tissue pacemakers to power grids. For these, the ongoing transition to distributed renewable energy sources leads to a proliferation of dynamical actors. The desynchronisation of a few or even one of those would likely result in a substantial blackout. Thus the dynamical stability of the synchronous state has become a leading topic in power grid research. Here we uncover that, when taking into account physical losses in the network, the back-reaction of the network induces new exotic solitary states in the individual actors and the stability characteristics of the synchronous state are dramatically altered. These effects will have to be explicitly taken into account in the design of future power grids. We expect the results presented here to transfer to other systems of coupled heterogeneous Newtonian oscillators.