Search Results

Now showing 1 - 3 of 3
  • Item
    Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities
    (London : BMJ Publ. Group, 2021) Meng, Xia; Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolas Valdes; Osorio, Samuel; Garcia, null; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J. K.; Ryti, Niilo; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Nunes, Baltazar; Teixeira, João Paulo; Holobaca, Iulian Horia; Fratianni, Simona; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih-Chun; Li, Shanshan; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Wu, Tangchun; Gasparrini, Antonio; Kan, Haidong
    Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
  • Item
    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
    ([London] : Nature Publishing Group UK, 2020) Liu, Zhu; Ciais, Philippe; Deng, Zhu; Lei, Ruixue; Davis, Steven J.; Feng, Sha; Zheng, Bo; Cui, Duo; Dou, Xinyu; Zhu, Biqing; Guo, Rui; Ke, Piyu; Sun, Taochun; Lu, Chenxi; He, Pan; Wang, Yuan; Yue, Xu; Wang, Yilong; Lei, Yadong; Zhou, Hao; Cai, Zhaonan; Wu, Yuhui; Guo, Runtao; Han, Tingxuan; Xue, Jinjun; Boucher, Olivier; Boucher, Eulalie; Chevallier, Frédéric; Tanaka, Katsumasa; Wei, Yiming; Zhong, Haiwang; Kang, Chongqing; Zhang, Ning; Chen, Bin; Xi, Fengming; Liu, Miaomiao; Bréon, François-Marie; Lu, Yonglong; Zhang, Qiang; Guan, Dabo; Gong, Peng; Kammen, Daniel M.; He, Kebin; Schellnhuber, Hans Joachim
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
  • Item
    Megacity and local contributions to regional air pollution: An aircraft case study over London
    (Katlenburg-Lindau : EGU, 2020) Ashworth, Kirsti; Bucci, Silvia; Gallimore, Peter J.; Lee, Junghwa; Nelson, Beth S.; Sanchez-Marroquín, Alberto; Schimpf, Marina B.; Smith, Paul D.; Drysdale, Will S.; Hopkins, Jim R.; Lee, James D.; Pitt, Joe R.; Di Carlo, Piero; Krejci, Radovan; McQuaid, James B.
    In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Airborne Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 atmospheric research aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements, and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different air mass origins over the 2 d such that a distinct pollution plume from London, attributable marine emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events. The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv and NOx was 0.7- 0.8 ppbv. Downwind of London, we encountered elevations in all species with CO>100 ppbv, VOCs 2.8-3.8 ppbv, CH4>2080 ppbv and NOx>4 ppbv, and peak concentrations in individual pollution events were higher still. Levels of O3 were inversely correlated with NOx during the first flight, with O3 concentrations of 37 ppbv upwind falling to 26 ppbv in the well-defined London plume. Total pollutant fluxes from London were estimated through a vertical plane downwind of the city. Our calculated CO2 fluxes are within the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH4 and CO. On the second day, winds were lighter and downwind O3 concentrations were elevated to 39-43 ppbv (from 32 to 35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear transient enhancements from local sources. This series of flights demonstrated that even in a region of megacity outflow, such as the south-east of the UK, local fresh emissions and more distant UK sources of pollution can all contribute substantially to pollution events. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individual sources must therefore all be well-characterised and constrained to understand air quality around megacities such as London. Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring trends in emission strength and profiles over time. © 2020 Copernicus GmbH. All rights reserved.