Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Managing power demand from air conditioning benefits solar pv in India scenarios for 2040

2020, Ershad, Ahmad Murtaza, Pietzcker, Robert, Ueckerdt, Falko, Luderer, Gunnar

An Indian electricity system with very high shares of solar photovoltaics seems to be a plausible future given the ever-falling solar photovoltaic (PV) costs, recent Indian auction prices, and governmental support schemes. However, the variability of solar PV electricity, i.e., the seasonal, daily, and other weather-induced variations, could create an economic barrier. In this paper, we analyzed a strategy to overcome this barrier with demand-side management (DSM) by lending flexibility to the rapidly increasing electricity demand for air conditioning through either precooling or chilled water storage. With an open-source power sector model, we estimated the endogenous investments into and the hourly dispatching of these demand-side options for a broad range of potential PV shares in the Indian power system in 2040. We found that both options reduce the challenges of variability by shifting electricity demand from the evening peak to midday, thereby reducing the temporal mismatch of demand and solar PV supply profiles. This increases the economic value of solar PV, especially at shares above 40%, the level at which the economic value roughly doubles through demand flexibility. Consequently, DSM increases the competitive and cost-optimal solar PV generation share from 33-45% (without DSM) to ∼45-60% (with DSM). These insights are transferable to most countries with high solar irradiation in warm climate zones, which amounts to a major share of future electricity demand. This suggests that technologies, which give flexibility to air conditioning demand, can be an important contribution toward enabling a solar-centered global electricity supply. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Evaluating Evaporative Cooling Assisted Solid Desiccant Dehumidification System for Agricultural Storage Application

2022, Hussain, Ghulam, Aleem, Muhammad, Sultan, Muhammad, Sajjad, Uzair, Ibrahim, Sobhy M., Shamshiri, Redmond R., Farooq, Muhammad, Usman Khan, Muhammad, Bilal, Muhammad

The study aims to investigate Maisotsenko cycle evaporative cooling assisted solid desiccant air‐conditioning (M‐DAC) system for agricultural storage application. Conventional air‐conditioning (AC) systems used for this application are refrigeration‐based which are expensive as they consume excessive amount of primary‐energy. In this regard, the study developed a lab‐scale solid silica gel‐based desiccant AC (DAC) system. Thermodynamic performance of the developed system was investigated using various adsorption/dehumidification and desorption/regeneration cycles. The system possesses maximum adsorption potential i.e., 4.88 g/kg‐DA at higher regeneration temperature of 72.6 °C and long cycle time i.e., 60 min: 60 min. Moreover, the system’s energy consumption performance was investigated from viewpoints of maximum latent, sensible, and total heat as well as latent heat ratio (LHR), which were found to be 0.64 kW, 1.16 kW, and 1.80 kW, respectively with maximum LHR of 0.49. Additionally, the study compared standalone DAC (S‐ DAC), and M‐DAC system thermodynamically to investigate the feasibility of these systems from the viewpoints of temperature and relative humidity ranges, cooling potential (Qp), and coefficient of performance (COP). The S‐DAC system showed temperature and relative humidity ranging from 39 °C to 48 °C, and 35% to 66%, respectively, with Qp and COP of 17.55 kJ/kg, and 0.37, respectively. Conversely, the M‐DAC system showed temperature and relative humidity ranging from 17 °C to 25 °C, and 76% to 98%, respectively, with Qp and COP of 41.80 kJ/kg, and 0.87, respectively. Additionally, the study investigated respiratory heat generation rate (Qres), and heat transfer rate (Qrate) by agricultural products at different temperature gradient (∆T) and air velocity. The Qres and Qrate by the products were increased with ∆T and air velocity, respectively, thereby generating heat loads in the storage house. Therefore, the study suggests that the M‐DAC system could be a potential AC option for agricultural storage application.