Search Results

Now showing 1 - 2 of 2
  • Item
    An extended hybrid input-output model applied to fossil- and bio-based plastics
    (Amsterdam [u.a.] : Elsevier, 2021) Jander, Wiebke
    Matrix augmentation method is developed further and described transparently for enabling more specific input-output analyses of bio- vs. fossil-based sectors. A number of economic and environmental effects of substitution can be estimated, compared, and managed. While the model was applied for the first time to the German plastics industry, it can be well integrated into existing bioeconomy monitorings to represent substitution in sectors and countries. • Original matrix augmentation method is described in much detail for the first time considering available data for bio- and fossil-based industries. • Particular attention is paid to balancing cost and benefit in model building so that indicators can be integrated in a continuous monitoring of the bioeconomy. Hence, industry data is prefered to process data whenever possible. • Input structures of bio-based imports are considered in single-region input-output analysis.
  • Item
    Integrative programming for simulation of packaging headspace and shelf life of fresh produce
    (Amsterdam [u.a.] : Elsevier, 2021) Jalali, Ali; Linke, Manfred; Geyer, Martin; Mahajan, Pramod
    Fresh horticultural products are exposed to different environmental conditions from farm to fork. Barrier properties of packaging and physiological behaviour of produce, namely respiration and transpiration can affect headspace conditions surrounding produce and consequently remaining shelf life. Packaging material also plays a role in heat and mass transfer, such as thermal conduction and permeation of O2, CO2 and water vapour. All of these behaviours are integrated together in the form of ordinary differential equations and solved using numerical methods in MATLAB. • The simulation program is useful for designing the size and number of perforations to achieve equilibrium modified atmosphere alone or in combination with packaging material having a higher water transmission rate or active moisture absorber. • The simulation program is also useful for predicting the shelf life of fresh produce under the actual supply chain conditions. • The simulation program provides a flexible system to input predefined supply chain conditions and the properties of fresh produce and packaging material, thus, minimizing the costly and time consuming experimental procedures for selecting the optimum packaging material for fresh produce.