Search Results

Now showing 1 - 2 of 2
  • Item
    N 2 O emissions and NO 3 − leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Kasper, M.; Foldal, C.; Kitzler, B.; Haas, E.; Strauss, P.; Eder, A.; Zechmeister-Boltenstern, S.; Amon, B.
    National emission inventories for UN FCCC reporting estimate regional soil nitrous oxide (N 2 O) fluxes by considering the amount of N input as the only influencing factor for N 2 O emissions. Our aim was to deepen the understanding of N 2 O fluxes from agricultural soils, including region specific soil and climate properties into the estimation of emission to find targeted mitigation measures for the reduction of nitrogen losses and GHG emissions. Within this project, N 2 O emissions and nitrate (NO 3 − ) leaching were modelled under spatially distinct environmental conditions in two agricultural regions in Austria taking into account region specific soil and climatic properties, management practices and crop rotations. The LandscapeDNDC ecosystem model was used to calculate N 2 O emissions and NO 3 − leaching reflecting different types of vegetation, management operations and crop rotations. In addition, N input and N fluxes were assessed and N 2 O emissions were calculated. This approach allowed identifying hot spots of N 2 O emissions. Results show that certain combinations of soil type, weather conditions, crop and management can lead to high emissions. Mean values ranged from 0.15 to 1.29 kg N 2 O–N ha −1  year −1 (Marchfeld) and 0.26 to 0.52 kg N 2 O–N ha −1  year −1 (Grieskirchen). Nitrate leaching, which strongly dominated N-losses, often reacted opposite to N 2 O emissions. Larger quantities of NO 3 − were lost during years of higher precipitation, especially if winter barley was cultivated on sandy soils. Taking into account the detected hot spots of N 2 O emissions and NO 3 − leaching most efficient measures can be addressed to mitigate environmental impacts while maximising crop production. © 2018, The Author(s).
  • Item
    Farm water productivity in conventional and organic farming: Case studies of cow-calf farming systems in North Germany
    (Basel : MDPI AG, 2018) Vellenga, L.; Qualitz, G.; Drastig, K.
    The increase of organic agriculture in Germany raises the question of how water productivity differs from conventional agriculture. On three organic and two conventionally farming systems in Germany, water flows and water related indicators were quantified. Farm water productivity (FWP), farm water productivity of cow-calf production (FWPlivestock), and farm water productivity of food crop production (FWPfood crops) were calculated using the modeling software AgroHyd Farmmodel. The FWP was calculated on a mass and monetary basis. FWPlivestock showed the highest productivity on a mass basis occurring on a conventional farm with 0.09 kg m-3Winput, whereas one organic farm and one conventional farm showed the same results. On a monetary basis, organic cow-calf farming systems showed the highest FWPlivestock, with 0.28 € m-3Winput. Since the productivity of the farm depends strongly on the individual cultivated plants, FWPfood crops was compared at the level of the single crop. The results show furthermore that even with a precise examination of farm water productivity, a high bandwidth of temporal and local values are revealed on different farms: generic FWP for food crops and livestock are not within reach.