Search Results

Now showing 1 - 10 of 22
  • Item
    Discovery of chitin in skeletons of non-verongiid Red Sea demosponges
    (San Francisco, California, US : PLOS, 2018) Ehrlich, Hermann; Shaala, Lamiaa A.; Youssef, Diaa T. A.; Żółtowska- Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R.; Ivanenko, Viatcheslav N.; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil
    Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
  • Item
    Sensor-based detection of the severity of hyperkeratosis in the teats of dairy cows
    (Basel : MDPI AG, 2018) Demba, S.; Hoffmann, G.; Ammon, C.; Rose-Meierhöfer, S.
    The aim of this study was to evaluate whether the severity of hyperkeratosis (HK) in the teats of dairy cows can be assessed by a dielectric measurement. The study focused on surveying the occurrence of hyperkeratosis in a total of 241 teats of lactating dairy cows. A scoring system consisting of four categories was used to macroscopically assess the severity of HK. Additionally, the dielectric constant (DC) of all teats with milkability was measured in a double iteration with the MoistureMeterD (Delfin Technologies, Kuopio, Finland) on four different days. The Spearman rank correlation coefficient revealed a negative correlation between the DC and HK score (rs = −0.55 to −0.36). The results of the regression analysis showed that the DC values differed significantly between healthy teat ends (≤2) and teat ends with HK (≥3). Thus, the non-invasive measurement of DC provides a promising method of objectively assessing the occurrence and severity of HK.
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.
  • Item
    Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)
    (Wyoming, NSW : Ivyspring, 2021) Strobbia, Pietro; Cupil-Garcia, Vanessa; Crawford, Bridget M.; Fales, Andrew M.; Pfefer, T. Joshua; Liu, Yang; Maiwald, Martin; Sumpf, Bernd; Vo-Dinh, Tuan
    For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
  • Item
    Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results
    (San Francisco, California, US : PLOS, 2017) Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich
    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of nondestructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume ðbiasHisto MRI: Bonevolume = 2: 40 %, p < 0: 005) and a clearly significant deviation for the remaining defect width ðbiasHisto MRI: Defectwidth = 6: 73 %, p 0: 005Þ: But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
  • Item
    Charge isomers of myelin basic protein: Structure and interactions with membranes, nucleotide analogues, and calmodulin
    (San Francisco, CA : Public Library of Science, 2011) Wang, C.; Neugebauer, U.; Bürck, J.; Myllykoski, M.; Baumgärtel, P.; Popp, J.; Kursula, P.
    As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.
  • Item
    Statistical Properties and Predictability of Extreme Epileptic Events
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Frolov, Nikita S.; Grubov, Vadim V.; Maksimenko, Vladimir A.; Lüttjohann, Annika; Makarov, Vladimir V.; Pavlov, Alexey N.; Sitnikova, Evgenia; Pisarchik, Alexander N.; Kurths, Jürgen; Hramov, Alexander E.
    The use of extreme events theory for the analysis of spontaneous epileptic brain activity is a relevant multidisciplinary problem. It allows deeper understanding of pathological brain functioning and unraveling mechanisms underlying the epileptic seizure emergence along with its predictability. The latter is a desired goal in epileptology which might open the way for new therapies to control and prevent epileptic attacks. With this goal in mind, we applied the extreme event theory for studying statistical properties of electroencephalographic (EEG) recordings of WAG/Rij rats with genetic predisposition to absence epilepsy. Our approach allowed us to reveal extreme events inherent in this pathological spiking activity, highly pronounced in a particular frequency range. The return interval analysis showed that the epileptic seizures exhibit a highly-structural behavior during the active phase of the spiking activity. Obtained results evidenced a possibility for early (up to 7 s) prediction of epileptic seizures based on consideration of EEG statistical properties.
  • Item
    Persistent effectivity of gas plasma-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology
    (San Francisco, CA : Public Library of Science, 2014) Hoentsch, M.; Bussiahn, R.; Rebl, H.; Bergemann, C.; Eggert, M.; Frank, M.; Von Woedtke, T.; Nebe, B.
    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first timedependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics.