Search Results

Now showing 1 - 10 of 304
  • Item
    Batch and continuous lactic acid fermentation based on a multi-substrate approach
    (Basel : MDPI AG, 2020) Olszewska-Widdrat, Agata; Alexandri, Maria; López-Gómez, José Pablo; Schneider, Roland; Venus, Joachim
    The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L−1·h−1, while the lactic acid to sugar conversion yield was 0.86 g·g−1 . This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018
    (Basel : MDPI, 2020) Drastig, Katrin; Flemming, Inken; Gusovius, Hans-Jörg; Herppich, Werner B.
    Hemp (Cannabis sativa L.) is a high-yielding multi-purpose crop, but its hydrological functioning is poorly understood. Studies on the interception processes in hemp have been lacking so far. This study contributes to the understanding of the influences of evaporation of intercepted water and other hydrological fluxes within plants of two cultivars, “Santhica 27” and “Ivory”, on the water productivity. To determine water productivity and evaporation from interception, field measurements were conducted on plants of both cultivars at different stages of development. Precipitation (P), throughfall (TF), transpiration (T), and volumetric water content (VWC) were measured along with leaf area index (LAI) and yield of selected plant components. For the entire vegetation period, the cumulative P of 44 mm was converted into 13 mm TF (30%). The inferred evaporation of intercepted water (I) was high at 31 mm (71%). For the assessment water fluxes, the evaporation of intercepted water must be considered in the decision-making process. Besides the LAI, the plant architecture and the meteorological conditions during the cropping cycle seem to be the main factors determining I in the case of plants of both cultivars. Water productivity (WPDM) of the whole plant varied between 3.07 kg m−3 for Ivory and 3.49 for Santhica 27. In the case of bast yield, WPDM was 0.39 kg m-3 for Santhica 27 and 0.45 kg m−3 for Ivory. After the propagation of the uncertainties, the bandwidth of the WPDM of the whole plant was between 0.42 kg m−3 and 2.57 kg m−3. For bast fiber a bandwidth of the WP between 0.06 kg m−3 and 0.33 kg m−3 was calculated. The results show furthermore that even with a precise examination of water productivity, a high bandwidth of local values is revealed on different cultivars. However, generic WP values for fiber crops are not attainable.
  • Item
    Flow Cytometric Assessment of the Morphological and Physiological Changes of Listeria monocytogenes and Escherichia coli in Response to Natural Antimicrobial Exposure
    (Lausanne : Frontiers Media, 2018-11-14) Braschi, Giacomo; Patrignani, Francesca; Siroli, Lorenzo; Lanciotti, Rosalba; Schlueter, Oliver; Froehling, Antje
    Essential oils (EOs) or their components represent one of the most promising natural, safe, and feasible alternatives to prevent the growth of food-borne pathogens like Listeria monocytogenes and Escherichia coli in food matrices. Although antimicrobial properties of EOs and their components are well-documented, limited and fragmented information is available on the changes induced by these compounds, even at sub-lethal concentrations, in the physiological properties of microbial cells. The aim of this study was to explore the morpho-physiological changes of L. monocytogenes Scott A and E. coli MG 1655 induced after 1 h exposure to different sub-lethal and lethal concentrations of citral, carvacrol, (E)-2-hexenal, and thyme EO. For this purpose, different cell viability parameters such as membrane integrity, esterase activity, and cytoplasmic cell membrane potential were measured by flow cytometry. Flow cytometric data revealed specific response patterns in relation to the strain, the natural antimicrobial and its concentrations. Both the target microbial strains showed an increased cell membrane permeabilization without a loss of esterase activity and cell membrane potential with increasing citral, carvacrol and thyme EO concentrations. By contrast, (E)-2-hexenal did not significantly affect the measured physiological properties of L. monocytogenes Scott A and E. coli MG 1655. The used approach allowed identifying the most effective natural antimicrobials in relation to the microbial target. Copyright © 2018 Braschi, Patrignani, Siroli, Lanciotti, Schlueter and Froehling.
  • Item
    Molecular monitoring of the poplar wood chip microbiome as a function of storage strategy
    (Barking : Elsevier, 2021) Zöhrer, Julia; Probst, Maraike; Dumfort, Sabrina; Lenz, Hannes; Pecenka, Ralf; Insam, Heribert; Ascher-Jenull, Judith
    One of the most challenging aspects of using wood chips as renewable energy source is the loss of biomass related to storage. Therefore, we installed three outdoor industrial-scale piles (250 m³) of poplar wood chips and monitored the bacterial and fungal communities by next-generation sequencing over a storage period of 120 d. Two of the three piles were supplemented with calcium dihydroxide (Ca(OH)2) (1.5%, 3% w/w) in order to test its potential as alkaline stabilization agent to preserve woody biomass during storage. Shifts in the microbial community composition occurred almost entirely in the beginning of the storage experiment, which we attribute to the temperature rise of up to 60 °C within the first week of storage. Later, however, we found little changes. Independent of Ca(OH)2 concentration, a consortium of lignocellulolytic and thermotolerant microorganisms dominated the stored wood chip microbiota emphasizing their role as key players during wood decomposition. Although the addition of Ca(OH)2 altered the physicochemical properties of wood chips, it did not prevent loss of biomass. Especially the pH was increased in Ca(OH)2 treated piles. However, only minor differences in the microbial communities’ composition were detected following Ca(OH)2 addition, highlighting the microbes tolerance towards and adaptation to changing environmental conditions.
  • Item
    Farm water productivity in conventional and organic farming: Case studies of cow-calf farming systems in North Germany
    (Basel : MDPI AG, 2018) Vellenga, L.; Qualitz, G.; Drastig, K.
    The increase of organic agriculture in Germany raises the question of how water productivity differs from conventional agriculture. On three organic and two conventionally farming systems in Germany, water flows and water related indicators were quantified. Farm water productivity (FWP), farm water productivity of cow-calf production (FWPlivestock), and farm water productivity of food crop production (FWPfood crops) were calculated using the modeling software AgroHyd Farmmodel. The FWP was calculated on a mass and monetary basis. FWPlivestock showed the highest productivity on a mass basis occurring on a conventional farm with 0.09 kg m-3Winput, whereas one organic farm and one conventional farm showed the same results. On a monetary basis, organic cow-calf farming systems showed the highest FWPlivestock, with 0.28 € m-3Winput. Since the productivity of the farm depends strongly on the individual cultivated plants, FWPfood crops was compared at the level of the single crop. The results show furthermore that even with a precise examination of farm water productivity, a high bandwidth of temporal and local values are revealed on different farms: generic FWP for food crops and livestock are not within reach.
  • Item
    Application of hue spectra fingerprinting during cold storage and shelf-life of packaged sweet cherry
    (Cham : Springer, 2020) Le Nguyen, Lien Phuong; Visy, Anna; Baranyai, László; Friedrich, László; Mahajan, Pramod V.
    Presented work investigated the application of a new color analysis technique in post-harvest life of sweet cherry (Prunus avium L. ‘Hudson’). The hue spectra fingerprinting creates a histogram of image colors by summarizing the saturation. The advantage of this calculation method is that vivid colors make peaks while neutral background color is eliminated without object segmentation. Partial Least Squares (PLS) regression was used to estimate reference parameters during 9 d cold storage at 10 ± 0.5 °C (RH = 90 ± 1%) and following 2 d shelf-life at 20 ± 0.5 °C. The reference parameters of respiration, weight loss, fruit firmness and total soluble solid (TSS) content were measured. Samples were split into seven groups according to the number of perforations of polypropylene film and fructose concentration of moisture absorber. It was observed that parameters TSS and fruit firmness were the most sensitive to the length of storage. Weight loss was affected significantly by packaging. All reference parameters were estimated by PLS model with R2 > 0.917, but weight loss and respiration obtained high estimation error of RMSE% = 48.02% and 11.76%, respectively. TSS and fruit firmness prediction were successful with RMSE% = 0.84% and 1.85%, respectively. Desiccation and color change of peduncle became visible in the green range of hue spectra. Color change of red fruit was observed with decreasing saturation in the red range of hue spectra. Our findings suggest that hue spectra fingerprinting can be a useful nondestructive method for monitoring quality change of sweet cherry during post-harvest handling and shelf-life. © 2020, The Author(s).
  • Item
    Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications
    (Basel : MDPI, 2020) Naik, B. Kiran; Joshi, Mullapudi; Muthukumar, Palanisamy; Sultan, Muhammad; Miyazaki, Takahiko; Shamshiri, Redmond R.; Ashraf, Hadeed
    This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.
  • Item
    Effect of Liquid Hot Water Pretreatment on Hydrolysates Composition and Methane Yield of Rice Processing Residue
    (Basel : MDPI, 2021) López González, Lisbet Mailin; Heiermann, Monika
    Lignocellulosic rice processing residue was pretreated in liquid hot water (LHW) at three different temperatures (140, 160, and 180 °C) and two pretreatment times (10 and 20 min) in order to assess its effects on hydrolysates composition, matrix structural changes and methane yield. The concentrations of acetic acid, 5-hydroxymethylfurfural and furfural increased with pretreatment severity (log Ro). The maximum methane yield (276 L kg−1 VS) was achieved under pretreatment conditions of 180 °C for 20 min, with a 63% increase compared to untreated biomass. Structural changes resulted in a slight removal of silica on the upper portion of rice husks, visible predominantly at maximum severity. However, the outer epidermis was kept well organized. The results indicate, at severities 2.48 ≤ log Ro ≤ 3.66, a significant potential for the use of LHW to improve methane production from rice processing residue.
  • Item
    Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR
    (Basel : MDPI AG, 2019) Tsoulias, Nikos; Paraforos, Dimitrios S.; Fountas, Spyros; Zude-Sasse, Manuela
    Data of canopy morphology are crucial for cultivation tasks within orchards. In this study, a 2D light detection and range (LiDAR) laser scanner system was mounted on a tractor, tested on a box with known dimensions (1.81 m × 0.6 m × 0.6 m), and applied in an apple orchard to obtain the 3D structural parameters of the trees (n = 224). The analysis of a metal box which considered the height of four sides resulted in a mean absolute error (MAE) of 8.18 mm with a bias (MBE) of 2.75 mm, representing a root mean square error (RMSE) of 1.63% due to gaps in the point cloud and increased incident angle with enhanced distance between laser aperture and the object. A methodology based on a bivariate point density histogram is proposed to estimate the stem position of each tree. The cylindrical boundary was projected around the estimated stem positions to segment each individual tree. Subsequently, height, stem diameter, and volume of the segmented tree point clouds were estimated and compared with manual measurements. The estimated stem position of each tree was defined using a real time kinematic global navigation satellite system, (RTK-GNSS) resulting in an MAE and MBE of 33.7 mm and 36.5 mm, respectively. The coefficient of determination (R2) considering manual measurements and estimated data from the segmented point clouds appeared high with, respectively, R2 and RMSE of 0.87 and 5.71% for height, 0.88 and 2.23% for stem diameter, as well as 0.77 and 4.64% for canopy volume. Since a certain error for the height and volume measured manually can be assumed, the LiDAR approach provides an alternative to manual readings with the advantage of getting tree individual data of the entire orchard.
  • Item
    Case Study of Effects of Mineral N Fertilization Amounts on Water Productivity in Rainfed Winter Rapeseed Cultivation on a Sandy Soil in Brandenburg (Germany) over Three Years
    (Basel : MDPI, 2021) Drastig, Katrin; Kreidenweis, Ulrich; Meyer-Aurich, Andreas; Ammon, Christian; Prochnow, Annette
    Detailed knowledge about farm management practices and related hydrological processes on water productivity is required to substantially increase the productivity of precipitation water use in agriculture. With this in mind, the effect of the nitrogen (N) fertilization level on water productivity of winter oilseed rape (Brassica napus L.) was analyzed using a modeling approach and field measurements. In this first study of interception loss and water productivity in winter oilseed rape, the crop was cultivated in a field experiment on a sandy soil in Brandenburg (Germany) under five nitrogen fertilization treatments with 0, 60, 120, 180, and 240 kg mineral N ha−1 a−1. Based on data from three vegetation periods the water flows and the mass-based water productivity of seeds were calculated on a daily basis with the AgroHyd Farmmodel modeling software. As recommended from the recently developed guidelines of the FAO on water use in agriculture, the method water productivity was applied and uncertainties associated with the calculations were assessed. Economic profit-based water productivity (WPprofit) was calculated considering the costs of fertilization and the optimal level of N fertilization, which was determined based on a quadratic crop yield response function. Mean water productivity of seeds varied from 1.16 kg m−3 for the unfertilized control sample to 2.00 kg m−3 under the highest fertilization rate. N fertilization had a clearly positive effect on WPprofit. However, fertilizer application rates above 120 kg N ha−1 a−1 led to only marginal increases in yields. Water productivity of seeds under the highest fertilization rate was only insignificantly higher than under medium application rates. The optimum N level for the maximal WPprofit identified here was higher with 216 kg N ha−1 a−1. The conclusion is that further research is needed to investigate the interaction between fertilization and other farm management practices.