Search Results

Now showing 1 - 10 of 10
  • Item
    A review of the potential climate change impacts and adaptation options for European viticulture
    (Basel : MDPI, 2020) Santos, João A.; Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Dinis, Lia-Tânia; Correia, Carlos; Moriondo, Marco; Leolini, Luisa; Dibari, Camilla; Costafreda-Aumedes, Sergi; Kartschall, Thomas; Menz, Christoph; Molitor, Daniel; Junk, Jürgen; Beyer, Marco; Schultz, Hans R.
    Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe. © 2020 by the authors.
  • Item
    Sozialwissenschaftliche Klimaforschung: Mehr Visionen wagen!
    (München : Oekom - Gesellschaft fuer Oekologische Kommunikation mbH, 2013) Gerten, D.
    [No abstract available]
  • Item
    Anpassung an den Klimawandel - Potenziale sozialwissenschaftlicher Forschung in Deutschland
    (München : Oekom - Gesellschaft fuer Oekologische Kommunikation mbH, 2011) Grothmann, T.; Daschkeit, A.; Felgentreff, C.; Görg, C.; Horstmann, B.; Scholz, I.; Tekken, V.
    [No abstract available]
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 Â°C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
  • Item
    Regionalisation of global insights into dryland vulnerability: Better reflecting smallholders' vulnerability in Northeast Brazil
    (Amsterdam [u.a.] : Elsevier, 2014) Sietz, D.
    Global analyses of vulnerability reveal generic insights into the relation between socio-ecological systems and the stress impacting upon them including climate and market variability. They thus provide a valuable basis for better understanding and comparing the evolution of socio-ecological systems from a broad perspective. However, even when reflecting sub-national differences, global assessments necessarily aggregate regional variations in the underlying conditions of vulnerability. Refinements are therefore necessary to better accommodate context-specific processes and hence facilitate vulnerability reduction. This study presents a novel methodology to refining global insights into vulnerability at a regional scale. It is based on a spatially explicit link between broad patterns of vulnerability and modelled regional smallholder development. Its application in order to better represent the drylands of Northeast Brazil reveals specific facets of smallholders' vulnerability at the municipio level, reflecting non-linear dynamics. The results show that smallholders' vulnerability was widely exacerbated in the most vulnerable areas. One key mechanism causing such a vulnerability increase involved intensifying resource degradation and the related potential for impoverishment as modelled at the regional scale. In addition, by subsequently re-orienting their livelihoods towards off-farm activities, smallholders became more sensitive to fluctuations and competition in the labour market. In contrast to these critical trends, living and environmental conditions improved in only some areas, thus indicating a decrease in vulnerability. Altogether, in differentiating the heterogeneity of resource management and smallholders' livelihoods, the regional refinement presented in this study indicates necessary adjustments to generic strategies for vulnerability reduction gained at the global scale.
  • Item
    To what extent is climate change adaptation a novel challenge for agricultural modellers?
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kipling, R.P.; Topp, C.F.E.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.J.; Lauwers, L.; Özkan Gülzari, Ş.; Reidsma, P.; Rolinski, S.; Ruiz-Ramos, M.; Sandars, D.L.; Sándor, R.; Schönhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Schönhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Eory, V.
    Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change. © 2019 The Authors
  • Item
    Adapting flood preparedness tools to changing flood risk conditions: The situation in Poland
    (Sopot : Polish Academy of Sciences, 2014) Kundzewicz, Z.W.
    Flooding is the most destructive natural hazard in the Baltic Sea Basin in general and in Poland in particular. The notion includes floods from rivers and mountain torrents, as well as floods from sea surges in coastal areas, and floods from sewage systems. There have been several large floods in Poland in the last century and in recent decades, with damage exceeding 1% of the Polish GDP. The spatial and temporal characteristics of the flood risk in Poland are reviewed and observations and projections of changes in the flood hazard in the country are discussed. Furthermore, flood defences and flood preparedness systems in Poland are examined, with particular reference to the European Union (EU) Floods Directive, which is being implemented in Poland, an EU country. Finally, the public debate on flood risk and flood preparedness is reviewed.
  • Item
    Is land fragmentation facilitating or obstructing adoption of climate adaptation measures in Ethiopia?
    (Basel : MDPI AG, 2018) Cholo, T.C.; Fleskens, L.; Sietz, D.; Peerlings, J.
    Land fragmentation is high and increasing in the Gamo Highlands of southwest Ethiopia. We postulate that this substantial land fragmentation is obstructing the adoption of sustainable land management practices as climate adaptation measures. To explore this, a mixed method study was conducted with emphasis on a multivariate probit model. The results indicate that farmers adapt to climate change and variability they perceive. According to the probit model, there is no clear answer to the question whether land fragmentation facilitates or obstructs adoption of sustainable land management practices. Yet, a qualitative analysis found that farmers perceive land fragmentation as an obstacle to land improvement as adaptation strategy. Moreover, farmers invest more in land improvement on plots close to their homestead than in remote plots. However, the higher land fragmentation also promoted crop diversification, manure application and terracing. Although exogenous to farmers, we therefore suggest that land fragmentation can be deployed in climate change adaptation planning. This can be done through voluntary assembling of small neighboring plots in clusters of different microclimates to encourage investment in remote fields and to collectively optimize the benefits of fragmentation to adaptation.
  • Item
    Towards adaptation of agriculture to climate change in the Mediterranean
    (Heidelberg : Springer Verlag, 2011) Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S.
    This study links climate change impacts to the development of adaptation strategies for agriculture on the Mediterranean region. Climate change is expected to intensify the existing risks, particularly in regions with current water scarcity, and create new opportunities for improving land and water management. These risks and opportunities are characterised and interpreted across Mediterranean areas by analysing water scarcity pressures and potential impacts on crop productivity over the next decades. The need to respond to these risks and opportunities is addressed by evaluating an adaptive capacity index that represents the ability of Mediterranean agriculture to respond to climate change. We propose an adaptive capacity index with three major components that characterise the economic capacity, human and civic resources, and agricultural innovation. These results aim to assist stakeholders as they take up the adaptation challenge and develop measures to reduce the vulnerability of the sector to climate change.
  • Item
    Can Tanzania’s adaptation measures prevent future maize yield decline? A simulation study from Singida region
    (Berlin ; Heidelberg ; New York : Springer, 2021) Volk, Johanna; Gornott, Christoph; Sieber, Stefan; Lana, Marcos Alberto
    Cereal crop production in sub-Saharan Africa has not achieved the much-needed increase in yields to foster economic development and food security. Maize yields in the region’s semi-arid agroecosystems are constrained by highly variable rainfall, which may be worsened by climate change. Thus, the Tanzanian government has prioritized agriculture as an adaptation sector in its intended nationally determined contribution, and crop management adjustments as a key investment area in its Agricultural Sector Development Programme. In this study, we investigated how future changes in maize yields under different climate scenarios can be countered by regional adjusted crop management and cultivar adaptation strategies. A crop model was used to simulate maize yields in the Singida region of Tanzania for the baseline period 1980–2012 and under three future climate projections for 2020–2060 and 2061–2099. Adaptation strategies to improve yields were full irrigation, deficit irrigation, mulch and nitrogen addition and another cultivar. According to our model results, increase in temperature is the main driver of future maize yield decline. Increased respiration and phenological development were associated with lower maize yields of 16% in 2020–2060 and 20% in 2061–2099 compared to the 1980–2012 baseline. Surprisingly, none of the management strategies significantly improved yields; however, a different maize variety that was tested as an alternative coping strategy performed better. This study suggests that investment in accessibility of improved varieties and investigation of maize traits that have the potential to perform well in a warmer future are better suited for sustaining maize production in the semi-arid region than adjustments in crop management.