Search Results

Now showing 1 - 10 of 116
  • Item
    Rare-earth-free MnAl-C-Ni permanent magnets produced by extrusion of powder milled from bulk
    (Amsterdam : Elsevier, 2020) Feng, Le; Freudenberger, Jens; Mix, Torsten; Nielsch, Kornelius; Woodcock, Thomas George
    Rare-earth-free MnAl-C-Ni permanent magnets have been produced for the first time by extruding powders milled from bulk. The resulting materials, fabricated using different conditions, contained a large volume fraction (> 0.92) of the desired τ-phase. In terms of the maximum energy product, the best performance obtained for a whole, transverse section of the extruded material was (BH)max = 46 kJm−3, and was (BH)max = 49 kJm−3 for a sample taken from near the edge of this section. Analysis showed that this material was comparable to the long-established benchmark, comprising MnAl-C-based magnets extruded in industry from bulk or from gas-atomised powder. Such materials are no longer available. The microstructure of the materials produced here consisted of fine, recrystallised grains, which exhibited an <001> fibre texture with intermediate texture quality and of larger, non-recrystallised regions, which contained hierarchical twinning and a high density of defects. The volume fraction and size of the non-recrystallised regions was greatly reduced by decreasing the size of the initial powder particles. This led to a large increase in the squareness factor of the demagnetisation curve and consequently to the high (BH)max values observed.
  • Item
    Bed flow photoreactor experiments to assess the photocatalytic nitrogen oxides abatement under simulated atmospheric conditions
    (Amsterdam : Elsevier, 2018) Mothes, F.; Ifang, S.; Gallus, M.; Golly, B.; Boréave, A.; Kurtenbach, R.; Kleffmann, J.; George, C.; Herrmann, H.
    Small scale bed flow photoreactor experiments were performed to assess the photocatalytic performance of cement-based TiO2-containing materials for NOx reduction through the determination of kinetic parameters under variation of the experimental conditions (relative humidity, flow rate, mixing ratio and light intensity) and monitoring of potential reaction products in the gas phase and the aqueous extract of the surface. The results clearly demonstrated the general potential of the tested material to photocatalytically remediate gas phase NOx by conversion into nitrite and nitrate as identified reaction products at the surface. The measured uptake coefficients for NO and NO2 under atmospheric relevant conditions were in the range of 5 × 10−5 with a corresponding surface deposition velocity of about 0.5 cm s−1. However, it became also clear that the photocatalytic activity is in part significantly dependent on the experimental conditions. The relative humidity and the mixing ratio of the air pollutant were identified as the most important parameters. In addition, under certain conditions, a renoxification process can occur. The comprehensive results of the present study are discussed in detail to develop recommendations for a possible future application of this technique to improve urban air quality.
  • Item
    Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning
    (Amsterdam : Elsevier, 2021) Ernst, Owen C.; Uebel, David; Kayser, Stefan; Lange, Felix; Teubner, Thomas; Boeck, Torsten
    Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020
  • Item
    How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative
    (Amsterdam : Elsevier, 2018) Mobarak, Edouard; Javanainen, Matti; Kulig, Waldemar; Honigmann, Alf; Sezgin, Erdinc; Aho, Noora; Eggeling, Christian; Rog, Tomasz; Vattulainen, Ilpo
    Organic dye-tagged lipid analogs are essential for many fluorescence-based investigations of complex membrane structures, especially when using advanced microscopy approaches. However, lipid analogs may interfere with membrane structure and dynamics, and it is not obvious that the properties of lipid analogs would match those of non-labeled host lipids. In this work, we bridged atomistic simulations with super-resolution imaging experiments and biomimetic membranes to assess the performance of commonly used sphingomyelin-based lipid analogs. The objective was to compare, on equal footing, the relative strengths and weaknesses of acyl chain labeling, headgroup labeling, and labeling based on poly-ethyl-glycol (PEG) linkers in determining biomembrane properties. We observed that the most appropriate strategy to minimize dye-induced membrane perturbations and to allow consideration of Brownian-like diffusion in liquid-ordered membrane environments is to decouple the dye from a membrane by a PEG linker attached to a lipid headgroup. Yet, while the use of PEG linkers may sound a rational and even an obvious approach to explore membrane dynamics, the results also suggest that the dyes exploiting PEG linkers interfere with molecular interactions and their dynamics. Overall, the results highlight the great care needed when using fluorescent lipid analogs, in particular accurate controls.
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Encapsulation of bacteria in bilayer Pluronic thin film hydrogels: A safe format for engineered living materials
    (Amsterdam : Elsevier, 2023) Bhusari, Shardul; Kim, Juhyun; Polizzi, Karen; Sankaran, Shrikrishnan; del Campo, Aránzazu
    In engineered living materials (ELMs) non-living matrices encapsulate microorganisms to acquire capabilities like sensing or biosynthesis. The confinement of the organisms to the matrix and the prevention of overgrowth and escape during the lifetime of the material is necessary for the application of ELMs into real devices. In this study, a bilayer thin film hydrogel of Pluronic F127 and Pluronic F127 acrylate polymers supported on a solid substrate is introduced. The inner hydrogel layer contains genetically engineered bacteria and supports their growth, while the outer layer acts as an envelope and does not allow leakage of the living organisms outside of the film for at least 15 days. Due to the flat and transparent nature of the construct, the thin layer is suited for microscopy and spectroscopy-based analyses. The composition and properties of the inner and outer layer are adjusted independently to fulfil viability and confinement requirements. We demonstrate that bacterial growth and light-induced protein production are possible in the inner layer and their extent is influenced by the crosslinking degree of the used hydrogel. Bacteria inside the hydrogel are viable long term, they can act as lactate-sensors and remain active after storage in phosphate buffer at room temperature for at least 3 weeks. The versatility of bilayer bacteria thin-films is attractive for fundamental studies and for the development of application-oriented ELMs.
  • Item
    Recent advances for flame retardant rubber composites: Mini-review
    (Amsterdam : Elsevier, 2023) Lai, Liangqing; Liu, Jia; Lv, Zhen; Gao, Tianming; Luo, Yongyue
    Flame retardant rubber composites have attracted a great attention during the past decades owing to their irreplaceable roles in complex industrial systems. Large amounts of efforts have been made to improve the flame retardant ability, developing high efficiency flame retardant systems which can reduce the release of heat, smoke and toxic gases while not deteriorate overall properties is becoming more and more important. This review briefly outlines the recent developments of flame retardant natural rubbers, silicon rubbers, some kinds of artificial rubbers and polyurethane elastomer composites, focuses on the design, development, mechanism and applications of advanced high-performance flame-retardant methods. Finally, outlooks the future tendency including more environmental-friendly strategies, higher flame-retardant efficiency and development of multifunctional flame-retardant rubber composites are proposed.
  • Item
    In situ detection of cracks during laser powder bed fusion using acoustic emission monitoring
    (Amsterdam : Elsevier, 2022) Seleznev, Mikhail; Gustmann, Tobias; Friebel, Judith Miriam; Peuker, Urs Alexander; Kühn, Uta; Hufenbach, Julia Kristin; Biermann, Horst; Weidner, Anja
    Despite rapid development of laser powder bed fusion (L-PBF) and its monitoring techniques, there is still a lack of in situ crack detection methods, among which acoustic emission (AE) is one of the most sensitive. To elaborate on this topic, in situ AE monitoring was applied to L-PBF manufacturing of a high-strength Al92Mn6Ce2 (at. %) alloy and combined with subsequent X-ray computed tomography. By using a structure borne high-frequency sensor, even a simple threshold-based monitoring was able to detect AE activity associated with cracking, which occurred not only during L-PBF itself, but also after the build job was completed, i.e. in the cooling phase. AE data analysis revealed that crack-related signals can easily be separated from the background noise (e.g. inert gas circulation pump) through their specific shape of a waveform, as well as their energy, skewness and kurtosis. Thus, AE was verified to be a promising method for L-PBF monitoring, enabling to detect formation of cracks regardless of their spatial and temporal occurrence.
  • Item
    Development and characterization of a metastable Al-Mn-Ce alloy produced by laser powder bed fusion
    (Amsterdam : Elsevier, 2021) Gabrysiak, Katharina; Gustmann, Tobias; Freudenberger, Jens; Neufeld, Kai; Giebeler, Lars; Leyens, Christoph; Kühn, Uta
    Laser powder bed fusion (LPBF) can help to overcome two challenges occurring by casting of metastable Al alloys: (1) the high amount of casting defects and (2) the limited part size while maintaining rapid solidification of the whole cross-section. In this study, an Al92Mn6Ce2 alloy was processed crack-free without baseplate heating by LPBF. The high cooling rate during fabrication has a significant impact on the microstructure, which was characterized by SEM, TEM and XRD. The processing through LPBF causes a high amount and a strong refinement of the intermetallic Al20Mn2Ce precipitates. This leads, compared to suction-cast specimens, to a higher hardness (180 HV 5) and a higher tolerable compressive stress (>1200 MPa) associated with a pronounced plasticity without failure up to a strain of 40%. The extraordinary mechanical properties of additively manufactured Al92Mn6Ce2 can extend the possibilities of producing novel LPBF lightweight structures for potential applications under harsh conditions.
  • Item
    Reversibly compressible and freestanding monolithic carbon spherogels
    (Amsterdam : Elsevier, 2019) Salihovic, M.; Zickler, G.A.; Fritz-Popovski, G.; Ulbricht, M.; Paris, O.; Hüsing, N.; Presser, V.; Elsaesser, M.S.
    We present a versatile strategy to tailor the nanostructure of monolithic carbon aerogels. By use of an aqueous colloidal solution of polystyrene in the sol-gel processing of resorcinol-formaldehyde gels, we can prepare, after supercritical drying and successive carbonization, freestanding monolithic carbon aerogels, solely composed of interconnected and uniformly sized hollow spheres, which we name carbon spherogels. Each sphere is enclosed by a microporous carbon wall whose thickness can be adjusted by the polystyrene concentration, which affects the pore texture as well as the mechanical properties of the aerogel monolith. In this study, we used monodisperse polystyrene spheres of approximately 250 nm diameter, which result in an inner diameter of the final hollow carbon spheres of approximately 200 ± 5 nm due to shrinkage during the carbonization process. The excellent homogeneity of the samples, as well as uniform sphere geometries, are confirmed by small- and angle X-ray scattering. The presence of macropores between the hollow spheres creates a monolithic network with the benefit of being reversibly compressible up to 10% linear strain without destruction. Electrochemical tests demonstrate the applicability of ground and CO2 activated carbon spherogels as electrode materials. © 2019 The Authors