Search Results

Now showing 1 - 2 of 2
  • Item
    Double-Hydrophobic-Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling
    (Chichester : John Wiley and Sons Ltd, 2020) Mredha, M.T.I.; Le, H.H.; Cui, J.; Jeon, I.
    In recent years, various hydrogels with a wide range of functionalities have been developed. However, owing to the two major drawbacks of hydrogels—air-drying and water-swelling—hydrogels developed thus far have yet to achieve most of their potential applications. Herein, a bioinspired, facile, and versatile method for fabricating hydrogels with high stability in both air and water is reported. This method includes the creation of a bioinspired homogeneous fusion layer of a hydrophobic polymer and oil in the outermost surface layer of the hydrogel via a double-hydrophobic-coating produced through quenching. As a proof-of-concept, this method is applied to a polyacrylamide hydrogel without compromising its mechanical properties. The coated hydrogel exhibits strong resistance to both drying in air and swelling in multiple aqueous environments. Furthermore, the versatility of this method is demonstrated using different types of hydrogels and oils. Because this method is easy to apply and is not dependent on hydrogel surface chemistry, it can significantly broaden the scope of next-generation hydrogels for real-world applications in both wet and dry environments.
  • Item
    Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae
    (Chichester : John Wiley and Sons Ltd, 2020) Kiefer, R.; Jurisic, M.; Dahlem, C.; Koch, M.; Schmitt, M.J.; Kiemer, A.K.; Schneider, M.; Breinig, F.
    Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.