Search Results

Now showing 1 - 2 of 2
  • Item
    Chemical composition of cloud water in the puerto rican tropical trade wind cumuli
    (Dordrecht : Springer, 2009) Gioda, A.; Mayol-Bracero, O.L.; Morales-García, F.; Collett, J.; Decesari, S.; Emblico, L.; Facchini, M.C.; Morales-De Jesús, R.J.; Mertes, S.; Borrmann, S.; Walter, S.; Schneider, J.
    As part of the Rain In Cumulus over the Ocean Experiment (RICO) and the Puerto Rico Aerosol and Cloud Study (PRACS), cloud water was collected at East Peak (EP) in Puerto Rico. The main objective of this study was to determine the concentrations of water-soluble species (Cl-, NO3 -, SO4 2-, NH4 +, Ca 2+, H+, Mg2+, K+, and Na +) in water samples taken from clouds influenced by tropical trade winds. The most abundant inorganic species were Na+ (average 465 μeq l-1) and Cl- (434 μeq l-1), followed by Mg2+ (105 μeq l-1), SO4 2- (61 μeq l-1), and NO3 - (25 μeq l -1). High concentrations of nss-SO4 2 (28 μeq l-1), NO3 - (86 μeq l-1), and H+ (14.5 μeq l-1) were measured with a shift in air masses origin from the North Atlantic to North American continent, which reflected a strong anthropogenic influence on cloud chemistry at EP. Long-range transport of particles and acid gases seems to be the factor responsible for fluctuations in concentrations and pH of cloud water at East Peak. When under trade wind influences the liquid phase concentrations of all inorganic substances were similar to those found in clouds in other clean maritime environments. © 2008 Springer Science+Business Media B.V.
  • Item
    Ship-borne aerosol profiling with lidar over the Atlantic Ocean: From pure marine conditions to complex dust-smoke mixtures
    (Göttingen : Copernicus GmbH, 2018) Bohlmann, S.; Baars, H.; Radenz, M.; Engelmann, R.; Macke, A.
    The multi-wavelength Raman lidar PollyXT has been regularly operated aboard the research vessel Polarstern on expeditions across the Atlantic Ocean from north to south and vice versa. The lidar measurements of the RV Polarstern cruises PS95 from Bremerhaven, Germany, to Cape Town, Republic of South Africa (November 2015), and PS98 from Punta Arenas, Chile, to Bremerhaven, Germany (April/May 2016), are presented and analysed in detail. The latest set-up of PollyXT allows improved coverage of the marine boundary layer (MBL) due to an additional near-range receiver. Three case studies provide an overview of the aerosol detected over the Atlantic Ocean. In the first case, marine conditions were observed near South Africa on the autumn cruise PS95. Values of optical properties (depolarisation ratios close to zero, lidar ratios of 23 sr at 355 and 532 nm) within the MBL indicate pure marine aerosol. A layer of dried marine aerosol, indicated by an increase of the particle depolarisation ratio to about 10% at 355 nm (9% at 532 nm) and thus confirming the non-sphericity of these particles, could be detected on top of the MBL. On the same cruise, an almost pure Saharan dust plume was observed near the Canary Islands, presented in the second case. The third case deals with several layers of Saharan dust partly mixed with biomass-burning smoke measured on PS98 near the Cabo Verde islands. While the MBL was partly mixed with dust in the pure Saharan dust case, an almost marine MBL was observed in the third case. A statistical analysis showed latitudinal differences in the optical properties within the MBL, caused by the downmixing of dust in the tropics and anthropogenic influences in the northern latitudes, whereas the optical properties of the MBL in the Southern Hemisphere correlate with typical marine values. The particle depolarisation ratio of dried marine layers ranged between 4 and 9% at 532 nm. Night measurements from PS95 and PS98 were used to illustrate the potential of aerosol classification using lidar ratio, particle depolarisation ratio at 355 and 532 nm, and Angström exponent. Lidar ratio and particle depolarisation ratio have been found to be the main indicator for particle type, whereas the Ångström exponent is rather variable.