Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Ultrafast Structural Changes in Chiral Molecules Measured with Free-Electron Lasers

2020, Schmidt, P., Music, V., Hartmann, G., Boll, R., Erk, B., Bari, S., Allum, F., Baumann, T.M., Brenner, G., Brouard, M., Burt, M., Coffee, R., Dörner, S., Galler, A., Grychtol, P., Heathcote, D., Inhester, L., Kazemi, M., Larsson, M., Li, Z., Lutmann, A., Manschwetus, B., Marder, L., Mason, R., Moeller, S., Osipov, T., Otto, H., Passow, C., Rolles, D., Rupprecht, P., Schubert, K., Schwob, L., Thomas, R., Vallance, C., Von Korff Schmising, C., Wagner, R., Walter, P., Wolf, T.J.A., Zhaunerchyk, V., Meyer, M., Ehresmann, A., Knie, A., Demekhin, P.V., Ilchen, M.

(X-ray) free-electron lasers are employed to site specifically interrogate atomic fragments during ultra-fast photolysis of chiral molecules via time-resolved photoelectron circular dichroism. © 2020 Institute of Physics Publishing. All rights reserved.

Loading...
Thumbnail Image
Item

Correlated electronic decay following intense near-infrared ionization of clusters

2015, Schütte, Bernd, Arbeiter, Mathias, Fennel, Thomas, Jabbari, Ghazal, Kuleff, Alexander I., Vrakking, Marc J. J., Rouzée, Arnaud

We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.

Loading...
Thumbnail Image
Item

Attosecond electron thermalization in laser-induced nonsequential multiple ionization: Hard versus glancing collisions

2008, Liu, X., De Morisson Faria, C.F., Becker, W.

A recollision-based largely classical statistical model of laser-induced nonsequential multiple (N-fold) ionization of atoms is further explored. Upon its return to the ionic core, the first-ionized electron interacts with the other N - 1 bound electrons either through a contact or a Coulomb interaction. The returning electron may leave either immediately after this interaction or join the other electrons to form a thermalized complex which leaves the ion after the delay Δt, which is the sum of a thermalization time and a possible additional dwell time. Good agreement with the available triple and quadruple ionization data in neon and argon is obtained with the contact scenario and delays of Δt = 0.17 T and 0.265 T, respectively, with T the laser period. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Interatomic Coulombic Decay Processes after Multiple Valence Excitations in Ne Clusters

2015, Iablonskyi, D., Nagaya, K., Fukuzawa, H., Motomura, K., Kumagai, Y., Mondal, S., Tachibana, T., Takanashi, T., Nishiyama, T., Matsunami, K., Johnsson, P., Piseri, P., Sansone, G., Dubrouil, A., Reduzzi, M., Carpeggiani, P., Vozzi, C., Devetta, M., Negro, M., Faccialà, D., Calegari, F., Trabattoni, A., Castrovilli, M., Ovcharenko, Y., Möller, T., Mudrich, M., Stienkemeier, F., Coreno, M., Alagia, M., Schütte, B., Berrah, N., Callegari, C., Plekan, O., Finetti, P., Spezzani, C., Ferrari, E., Allaria, E., Penco, G., Serpico, C., De Ninno, G., Diviacco, B., Di Mitri, S., Giannessi, L., Prince, K.., Yao, M., Ueda, K.

We present a comprehensive analysis of autoionization processes in Ne clusters (~5000 atoms) after multiple valence excitations by free electron laser radiation. The evolution from 2-body interatomic Coulombic decay (ICD) to 3-body ICD is demonstrated when changing from surface to bulk Frenkel exciton excitation. Super Coster-Kronig type 2-body ICD is observed at Wannier exciton which quenches the main ICD channel.

Loading...
Thumbnail Image
Item

Interference in strong-field ionization of a two-centre atomic system

2008, Ansari, Z., Böttcher, M., Manschwetus, B., Rottke, H., Sandner, W., Verhoef, A., Lezius, M., Paulus, G.G., Saenz, A., Milošević, D.B.

Strong-field photoionization of argon dimers by a few-cycle laser pulse is investigated using electron-ion coincidence momentum spectroscopy. The momentum distribution of the photoelectrons exhibits interference due to the emission from the two atomic argon centres, in analogy with a Young's doubleslit experiment. However, a simulation of the dimer photoelectron momentum spectrum based on the atomic spectrum supplemented with a theoretically derived interference term leads to distinct deviations from the experimental result. The deviations may have their origin in a complex electron dynamics during strong-field ionization of the Ar2 dimer. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.