Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

GARRLiC and LIRIC: Strengths and limitations for the characterization of dust and marine particles along with their mixtures

2017, Tsekeri, Alexandra, Lopatin, Anton, Amiridis, Vassilis, Marinou, Eleni, Igloffstein, Julia, Siomos, Nikolaos, Solomos, Stavros, Kokkalis, Panagiotis, Engelmann, Ronny, Baars, Holger, Gratsea, Myrto, Raptis, Panagiotis I., Binietoglou, Ioannis, Mihalopoulos, Nikolaos, Kalivitis, Nikolaos, Kouvarakis, Giorgos, Bartsotas, Nikolaos, Kallos, George, Basart, Sara, Schuettemeyer, Dirk, Wandinger, Ulla, Ansmann, Albert, Chaikovsky, Anatoli P., Dubovik, Oleg

The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean during the CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment (CHARADMExp). Three case studies are presented, focusing on dust-dominated, marinedominated and dust-marine mixing conditions. GARRLiC and LIRIC achieve a satisfactory characterization for the dust-dominated case in terms of particle microphysical properties and concentration profiles. The marine-dominated and the mixture cases are more challenging for both algorithms, although GARRLiC manages to provide more detailed microphysical retrievals compared to AERONET, while LIRIC effectively discriminates dust and marine particles in its concentration profile retrievals. The results are also compared with modelled dust and marine concentration profiles and surface in situ measurements.

Loading...
Thumbnail Image
Item

Do new sea spray aerosol source functions improve the results of a regional aerosol model?

2018, Barthel, Stefan, Tegen, Ina, Wolke, Ralf

Sea spray aerosol particle is a dominating part of the global aerosol mass load of natural origin. Thus, it strongly influences the atmospheric radiation balance and cloud properties especially over the oceans. Uncertainties of the estimated climate impacts by this aerosol type are partly caused by the uncertainties in the particle size dependent emission fluxes of sea spray aerosol particle. We present simulations with a regional aerosol transport model system in two domains, for three months and compared the model results to measurements at four stations using various sea spray aerosol particle source source functions. Despite these limitations we found the results using different source functions are within the range of most model uncertainties. Especially the model's ability to produce realistic wind speeds is crucial. Furthermore, the model results are more affected by a function correcting the emission flux for the effect of the sea surface temperature than by the use of different source functions. © 2018 The Authors