Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Workshop on "Sensor-supported detection of pests in outdoor cultivation" at the Leibniz Institute for Agricultural Engineering and Bioeconomy in Potsdam-Bornim (ATB), May 11 and 12, 2022

2023, Dammer, Karl-Heinz

Loading...
Thumbnail Image
Item

In-situ fruit analysis by means of LiDAR 3D point cloud of normalized difference vegetation index (NDVI)

2023, Tsoulias, Nikos, Saha, Kowshik Kumar, Zude-Sasse, Manuela

A feasible method to analyse fruit at the tree is requested in precise production management. The employment of light detection and ranging (LiDAR) was approached aimed at measuring the number of fruit, quality-related size, and ripeness-related chlorophyll of fruit skin. During fruit development (65 – 130 day after full bloom, DAFB), apples were harvested and analysed in the laboratory (n = 225) with two LiDAR laser scanners measuring at 660 and 905 nm. From these two 3D point clouds, the normalized difference vegetation index (NDVILiDAR) was calculated. The correlation analysis of NDVILiDAR and chemically analysed fruit chlorophyll content showed R2 = 0.81 and RMSE = 3.63 % on the last measuring date, when fruit size reached 76 mm. The method was tested on 3D point clouds of 12 fruit trees measured directly in the orchard, during fruit growth on five measuring dates, and validated with manual fruit analysis in the orchard (n = 4632). Point clouds of individual apples were segmented from 3D point clouds of trees and fruit NDVILiDAR were calculated. The non-invasively obtained field data showed good calibration performance capturing number of fruit, fruit size, fruit NDVILiDAR, and chemically analysed chlorophyll content of R2 = 0.99, R2 = 0.98 with RMSE = 3.02 %, R2 = 0.65 with RMSE = 0.65 %, R2 = 0.78 with RMSE = 1.31 %, respectively, considering the related reference data at last measuring date 130 DAFB. The new approach of non-invasive laser scanning provided physiologically and agronomically valuable time series data on differences in fruit chlorophyll affected by the leaf area to number of fruit and leaf area to fruit fresh mass ratios. Concluding, the method provides a tool for gaining production-relevant plant data for, e.g., crop load management and selective harvesting by harvest robots.

Loading...
Thumbnail Image
Item

Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs

2023, Gwenzi, Willis, Simbanegavi, Tinoziva T., Rzymski, Piotr

Pharmaceuticals are widely used in Africa due to the high burden of human and animal diseases. However, a review of the current practices and pollution risks arising from the disposal of pharmaceuticals in low-income settings in Africa is still lacking. Therefore, the present review examined the literature to address the following questions: (1) what are the key factors driving the accumulation of unused and expired pharmaceuticals?, (2) what are the current disposal practices for unused and expired pharmaceuticals, and wastewater (feces and urine) containing excreted pharmaceuticals?, (3) what are the potential environmental and human health hazards posed by current disposal practices?, and (4) what are the key research needs on the disposal of pharmaceuticals in low-income settings? Evidence shows that, in low-income settings, wastewater comprising predominantly of feces and urine containing excreted pharmaceuticals often end up in on-site sanitation systems such as pit latrines, septic tanks, and the environment in the case of open defecation. Unused and expired pharmaceuticals are disposed of in pit latrines, household solid waste, and/or burned. The pollution risks of current disposal practices are poorly understood, but pharmaceutical pollution of groundwater sources, including those used for drinking water supply, may occur via strong hydrological connectivity between pit latrines and groundwater systems. Potential high-risk pollution and human exposure hotspots are discussed. However, compared to other environmental compartments, the occurrence, dissemination, fate, and human health risks of pharmaceuticals in the pit latrine-groundwater continuum are still understudied. Future research directions are discussed to address these gaps using the Source-Pathway-Receptor-Impact-Mitigation (SPRIM) continuum as an organizing framework.

Loading...
Thumbnail Image
Item

Closing Blank Spots and Illuminating Blind Spots in Research on Emerging Contaminants: The Source–Pathway–Receptor–Impact–Mitigation (SPRIM) Continuum as an Organizing Framework

2023, Gwenzi, Willis

Emerging contaminants (ECs) include: (1) high-technology rare earth elements, (2) nanomaterials, (3) antibiotic/antimicrobial resistance, (4) microplastics, and (5) synthetic organic chemicals, which are currently unregulated. ECs continue to attract considerable research and public attention due to their potential human and ecological health risks. However, an organizing conceptual framework for framing research on ECs is currently missing. Lacking a conceptual framework, only a few aspects are frequently well-studied (i.e., bandwagon/Matthew effect), while other equally important topics receive only cursory attention. In this Editorial perspective, the Source–Pathway–Receptor–Impact–Mitigation (SPRIM) continuum is proposed as an organizing framework to guide research on ECs. First, a description of the SPRIM continuum and its components is presented. Compared to the prevailing and seemingly ad hoc approach predominant in research on emerging contaminants, the potential novelty of applying the proposed SPRIM continuum framework is that it addresses the bandwagon, or Matthew, effect. As a decision-support tool, the SPRIM continuum framework serves a dual function as (1) a checklist to identify key knowledge gaps and frame future research, and (2) a primer for promoting the collaborative research and application of emerging big data analytics in research on emerging contaminants. Collectively, it is envisaged that the SPRIM continuum framework will provide a comprehensive and balanced understanding of various aspects of emerging contaminants relative to the current approach. The challenges of the SPRIM continuum framework as a framing and decision-support tool are also discussed. Future research directions on ECs are discussed in light of the SPRIM continuum concept. This Editorial closes with concluding remarks and a look ahead. The issues discussed are cross-cutting or generic, and thus relate to several groups of ECs, including emerging organic contaminants (EOCs), which are the focus of the current Special Issue. This Special Issue, entitled ‘Emerging Organic Contaminants in Aquatic Systems: A Focus on the Source–Pathway–Receptor–Impact–Mitigation Continuum’, calls for high-quality contributions addressing several aspects of EOCs in aquatic systems. As a Guest Editor, I welcome and look forward to several high-quality contributions addressing at least one component or the entire spectrum of the SPRIM continuum.

Loading...
Thumbnail Image
Item

Electrohydrodynamic drying versus conventional drying methods: A comparison of key performance indicators

2023, Iranshahi, Kamran, Rubinetti, Donato, Onwude, Daniel I., Psarianos, Marios, Schlüter, Oliver K., Defraeye, Thijs

Preserving fruits and vegetables by drying is a traditional yet effective way of reducing food waste. Existing drying methods are either energy-intensive or lead to a significant reduction in product quality. Electrohydrodynamic (EHD) drying is an energy-efficient low-temperature drying method that presents an opportunity to comply with the current challenges of existing drying methods. However, despite its promising characteristics, EHD drying is yet to be accepted by industry and farmers. The adoption of EHD drying is hindered due to different reasons, such as uncertainties surrounding its scalability, quality of dried product, cost of operation, and sustainability compared to conventional drying methods. To address these concerns, this study quantifies and benchmarks the Key Performance Indicators (KPIs) of EHD drying compared to the standard conventional drying methods based on lab-scale experiments. These drying methods include hot-air, freeze, microwave, and solar drying. The results show that drying food using EHD is at least 1.6, 20, and 70 times more energy-efficient than the microwave, freeze, and hot-air, respectively. Similar results could be observed for exergy efficiency. EHD drying has superior product quality compared to other drying methods. For instance, it could retain 62% higher total phenolic content with 21% less color degradation than freeze-drying. Although microwave drying resulted in significantly higher drying kinetics than other techniques, EHD performed better than solar and freeze-drying but was comparable with hot-air drying. EHD drying also shows promising results in economic performance assessment. It is the cheapest drying method after solar drying and has the highest estimated net present value (NPV) after hot-air drying. Overall, compared to the currently used drying methods for small to medium-scale drying, EHD was found to be a more exergy and energy-efficient, cost-effective, and sustainable alternative that can provide higher-quality dried products. However, its drying kinetics should be improved for industrial applications.

Loading...
Thumbnail Image
Item

Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage

2023, Marzban, Nader, Libra, Judy A., Rotter, Vera Susanne, Ro, Kyoung S., Moloeznik Paniagua, Daniela, Filonenko, Svitlana

Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and −18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at −18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed.

Loading...
Thumbnail Image
Item

Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review

2023, Munekata, Paulo E. S., Finardi, Sarah, de Souza, Carolina Krebs, Meinert, Caroline, Pateiro, Mirian, Hoffmann, Tuany Gabriela, Domínguez, Rubén, Bertoli, Sávio Leandro, Kumar, Manoj, Lorenzo, José M.

The quality and shelf life of meat and meat products are key factors that are usually evaluated by complex and laborious protocols and intricate sensory methods. Devices with attractive characteristics (fast reading, portability, and relatively low operational costs) that facilitate the measurement of meat and meat products characteristics are of great value. This review aims to provide an overview of the fundamentals of electronic nose (E-nose), eye (E-eye), and tongue (E-tongue), data preprocessing, chemometrics, the application in the evaluation of quality and shelf life of meat and meat products, and advantages and disadvantages related to these electronic systems. E-nose is the most versatile technology among all three electronic systems and comprises applications to distinguish the application of different preservation methods (chilling vs. frozen, for instance), processing conditions (especially temperature and time), detect adulteration (meat from different species), and the monitoring of shelf life. Emerging applications include the detection of pathogenic microorganisms using E-nose. E-tongue is another relevant technology to determine adulteration, processing conditions, and to monitor shelf life. Finally, E-eye has been providing accurate measuring of color evaluation and grade marbling levels in fresh meat. However, advances are necessary to obtain information that are more related to industrial conditions. Advances to include industrial scenarios (cut sorting in continuous processing, for instance) are of great value.

Loading...
Thumbnail Image
Item

Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size

2023, Obi, Okey Francis, Pecenka, Ralf

Studies on the use of biomass from short rotation coppices for briquette production as a sustainable biofuel have been scarce in the literature. This study investigated the effects of two process variables, hammer mill screen size at three levels (5.3, 10.3, and 25.4 mm) and moisture content at three levels (13.6, 19, and 25% (w.b.)), on the properties of briquettes from poplar Max-4 trees. The whole tree was divided into two fractions, the crown and the stem, and briquettes were produced from them. The effects of the variables on compressed density, relaxed density, relaxation ratio, and the shatter index of the briquettes were analyzed. The results showed that the combined interaction of the variables had no significant effects (p > 0.05) on the compressed density, relaxed density, and relaxation ratio of the briquettes. However, hammer mill screen size and moisture content both significantly influenced the shatter index irrespective of the tree fraction (p < 0.05). Hammer mill screen sizes of 5.3 and 10.3 mm at moisture contents of 13.6 and 19% (w.b.) resulted in good quality briquettes across the properties investigated for both the crown and stem poplar tree fractions. This study shows that high-quality briquettes can be produced from poplar Max-4 woody biomass.

Loading...
Thumbnail Image
Item

Degradation Kinetics of Lignocellulolytic Enzymes in a Biogas Reactor Using Quantitative Mass Spectrometry

2023, Küchler, Jan, Willenbücher, Katharina, Reiß, Elisabeth, Nuß, Lea, Conrady, Marius, Ramm, Patrice, Schimpf, Ulrike, Reichl, Udo, Szewzyk, Ulrich, Benndorf, Dirk

The supplementation of lignocellulose-degrading enzymes can be used to enhance the performance of biogas production in industrial biogas plants. Since the structural stability of these enzyme preparations is essential for efficient application, reliable methods for the assessment of enzyme stability are crucial. Here, a mass-spectrometric-based assay was established to monitor the structural stability of enzymes, i.e., the structural integrity of these proteins, in anaerobic digestion (AD). The analysis of extracts of Lentinula edodes revealed the rapid degradation of lignocellulose-degrading enzymes, with an approximate half-life of 1.5 h. The observed low structural stability of lignocellulose-degrading enzymes in AD corresponded with previous results obtained for biogas content. The established workflow can be easily adapted for the monitoring of other enzyme formulations and provides a platform for evaluating the effects of enzyme additions in AD, together with a characterization of the biochemical methane potential used in order to determine the biodegradability of organic substrates.

Loading...
Thumbnail Image
Item

Measurement of Water Vapor Condensation on Apple Surfaces during Controlled Atmosphere Storage

2023, Linke, Manfred, Praeger, Ulrike, Neuwald, Daniel A., Geyer, Martin

Apples are stored at temperatures close to 0 °C and high relative humidity (up to 95%) under controlled atmosphere conditions. Under these conditions, the cyclic operation of the refrigeration machine and the associated temperature fluctuations can lead to localized undershoots of the dew point on fruit surfaces. The primary question for the present study was to prove that such condensation processes can be measured under practical conditions during apple storage. Using the example of a measuring point in the upper apple layer of a large bin in the supply air area, this evidence was provided. Using two independent measuring methods, a wetness sensor attached to the apple surface and determination of climatic conditions near the fruit, the phases of condensation, namely active condensation and evaporation, were measured over three weeks as a function of the operating time of the cooling system components (refrigeration machine, fans, defrosting regime). The system for measurement and continuous data acquisition in the case of an airtight CA-storage room is presented and the influence of the operation of the cooling system components in relation to condensation phenomena was evaluated. Depending on the set point specifications for ventilation and defrost control, condensed water was present on the apple surface between 33.4% and 100% of the duration of the varying cooling/re-warming cycles.