Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Self-Regenerating Soft Biophotovoltaic Devices

2018, Qiu, Xinkai, Castañeda Ocampo, Olga, de Vries, Hendrik W., van Putten, Maikel, Loznik, Mark, Herrmann, Andreas, Chiechi, Ryan C.

This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. © 2018 American Chemical Society.

Loading...
Thumbnail Image
Item

DC conductivity and Seebeck coefficient of nonstoichiometric MgCuZn ferrites

2017-2-8, Madhuri, W., Kiran, S. Roopas, Reddy, M. Penchal, Reddy, N. Ramamanohar, Kumar, K.V. Siva

Nonstoichiometric series of Mg0.5-xCuxZn0.5Fe1.9O4-δ where x = 0.0, 0.1, 0.15, 0.2 and 0.25 has been synthesized by conventional solid state reaction route. The single phase spinel structure of the double sintered ferrites was confirmed by X-ray diffraction patterns (XRD). The ferrite series was studied in terms of DC electrical conductivity and thermoelectric power in the temperature ranging from room temperature to 300 °C and 400 °C, respectively. It was observed that DC electrical conductivity and Seebeck coefficient α decreased with the increase in x. DC electrical conductivity was found to decrease by about 4 orders. All the compositions showed a negative Seebeck coefficient exhibiting n-type semiconducting nature. From the above experimental results, activation energy and mobility of all the samples were estimated. Small polaron hopping conduction mechanism was suggested for the series of ferrites. Owing to their low conductivity the nonstoichiometric MgCuZn ferrites are the best materials for transformer core and high definition television deflection yokes. © 2017 Wroclaw University of Science and Technology.

Loading...
Thumbnail Image
Item

PEGylation-Dependent Metabolic Rewiring of Macrophages with Silk Fibroin Nanoparticles

2019, Totten, John D., Wongpinyochit, Thidarat, Carrola, Joana, Duarte, Iola F., Seib, F. Philipp

Silk fibroin nanoparticles are emerging as promising nanomedicines, but their full therapeutic potential is yet to be realized. These nanoparticles can be readily PEGylated to improve colloidal stability and to tune degradation and drug release profiles; however, the relationship between silk fibroin nanoparticle PEGylation and macrophage activation still requires elucidation. Here, we used in vitro assays and nuclear magnetic resonance based metabolomics to examine the inflammatory phenotype and metabolic profiles of macrophages following their exposure to unmodified or PEGylated silk fibroin nanoparticles. The macrophages internalized both types of nanoparticles, but they showed different phenotypic and metabolic responses to each nanoparticle type. Unmodified silk fibroin nanoparticles induced the upregulation of several processes, including production of proinflammatory mediators (e.g., cytokines), release of nitric oxide, and promotion of antioxidant activity. These responses were accompanied by changes in the macrophage metabolomic profiles that were consistent with a proinflammatory state and that indicated an increase in glycolysis and reprogramming of the tricarboxylic acid cycle and the creatine kinase/phosphocreatine pathway. By contrast, PEGylated silk fibroin nanoparticles induced milder changes to both inflammatory and metabolic profiles, suggesting that immunomodulation of macrophages with silk fibroin nanoparticles is PEGylation-dependent. Overall, PEGylation of silk fibroin nanoparticles reduced the inflammatory and metabolic responses initiated by macrophages, and this observation could be used to guide the therapeutic applications of these nanoparticles. © 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport

2019, Grönke, Martin, Buschbeck, Benjamin, Schmidt, Peer, Valldor, Martin, Oswald, Steffen, Hao, Qi, Lubk, Axel, Wolf, Daniel, Steiner, Udo, Büchner, Bernd, Hampel, Silke

The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance

2018, Kuttner, Christian, Mayer, Martin, Dulle, Martin, Moscoso, Ana, López-Romero, Juan Manuel, Förster, Stephan, Fery, Andreas, Pérez-Juste, Jorge, Contreras-Cáceres, Rafael

We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

Loading...
Thumbnail Image
Item

Plasmon response evaluation based on image-derived arbitrary nanostructures

2018, Trautmann, S., Richard-Lacroix, M., Dathe, A., Schneidewind, H., Dellith, J., Fritzsche, W., Deckert, V.

The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems.

Loading...
Thumbnail Image
Item

Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating

2019, Sarkar, Swagato, Gupta, Vaibhav, Kumar, Mohit, Schubert, Jonas, Probst, Patrick T., Joseph, Joby, König, Tobias A.F.

For many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively. We use gold nanoparticles self-assembled in a linear template on a titanium dioxide (TiO 2 ) layer to study the dispersion relation with conventional ultraviolet-visible-near-infrared spectroscopic methods. Supported with finite-difference in time-domain simulations, we identify the optical band gaps as hybridized modes: plasmonic and photonic resonances. Compared to metallic grids, the observation range of hybridized guided modes can now be extended to modes along the nanoparticle chain lines. With future applications in energy conversion and optical filters employing these cost-efficient and upscalable directed self-assembly methods, we discuss also the application in refractive index sensing of the particle-based hybridized guided modes. Copyright © 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Turning a Killing Mechanism into an Adhesion and Antifouling Advantage

2019, Dedisch, Sarah, Obstals, Fabian, los Santos Pereira, Andres, Bruns, Michael, Jakob, Felix, Schwaneberg, Ulrich, Rodriguez‐Emmenegger, Cesar

Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing

2017, Sajfutdinow, M., Uhlig, K., Prager, A., Schneider, C., Abel, B., Smith, D.M.

Defined arrangements of individual molecules are covalenty connected ("printed") onto SAM-functionalised gold substrates with nanometer resolution. Substrates were initially pre-functionlised by coating with 3,3′-dithiodipropionic acid (DTPA) to form a self-assembled monolayer (SAM), which was characterised by atomic force microscopy (AFM), contact angle goniometry, cyclic voltammetry and surface plasmon resonance (SPR) spectroscopy. Pre-defined "ink" patterns displayed on DNA origami-based single-use carriers ("stamp") were covalently conjugated to the SAM using 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC) and N-hydroxy-succinimide (NHS). These anchor points were used to create nanometer-precise single-molecule arrays, here with complementary DNA and streptavidin. Sequential steps of the printing process were evaluated by AFM and SPR spectroscopy. It was shown that 30% of the detected arrangements closely match the expected length distribution of designed patterns, whereas another 40% exhibit error within the range of only 1 streptavidin molecule. SPR results indicate that imposing a defined separation between molecular anchor points within the pattern through this printing process enhances the efficiency for association of specific binding partners for systems with high sterical hindrance. This study expands upon earlier findings where geometrical information was conserved by the application of DNA nanostructures, by establishing a generalisable strategy which is universally applicable to nearly any type of prefunctionalised substrate such as metals, plastics, silicates, ITO or 2D materials.

Loading...
Thumbnail Image
Item

Strategies for Analyzing Noncommon-Atom Heterovalent Interfaces: The Case of CdTe-on-InSb

2019, Luna, Esperanza, Trampert, Achim, Lu, Jing, Aoki, Toshihiro, Zhang, Yong-Hang, McCartney, Martha R., Smith, David J.

Semiconductor heterostructures are intrinsic to a wide range of modern-day electronic devices, such as computers, light-emitting devices, and photodetectors. Knowledge of chemical interfacial profiles in these structures is critical to the task of optimizing the device performance. This work presents an analysis of the composition profile and strain across the noncommon-atom heterovalent CdTe/InSb interface, carried out using a combination of electron microscopy imaging techniques. Because of the close atomic numbers of the constituent elements, techniques such as high-angle annular-dark-field and large-angle bright-field scanning transmission electron microscopy, as well as electron energy-loss spectroscopy, give results from the interface region that are inherently difficult to interpret. By contrast, use of the 002 dark-field imaging technique emphasizes the interface location by comparing differences in structure factors between the two materials. Comparisons of experimental and simulated CdTe-on-InSb profiles reveal that the interface is structurally abrupt to within about 1.5 nm (10–90% criterion), while geometric phase analysis based on aberration-corrected electron microscopy images reveals a minimal level of interfacial strain. The present investigation opens new routes to the systematic investigation of heterovalent interfaces, formed by the combination of other valence-mismatched material systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim