Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy

2019, Niu, Gang, Calka, Pauline, Huang, Peng, Sharath, Sankaramangalam Ulhas, Petzold, Stefan, Gloskovskii, Andrei, Fröhlich, Karol, Zhao, Yudi, Kan, Jinfeng, Schubert, Markus Andreas, Bärwolf, Florian, Ren, Wei, Ye, Zuo-Guang, Perez, Eduardo, Wenger, Christian, Alff, Lambert, Schroeder, Thomas

The HfO2-based resistive random access memory (RRAM) is one of the most promising candidates for non-volatile memory applications. The detection and examination of the dynamic behavior of oxygen ions/vacancies are crucial to deeply understand the microscopic physical nature of the resistive switching (RS) behavior. By using synchrotron radiation based, non-destructive and bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate an operando diagnostic detection of the oxygen ‘breathing’ behavior at the oxide/metal interface, namely, oxygen migration between HfO2 and TiN during different RS periods. The results highlight the significance of oxide/metal interfaces in RRAM, even in filament-type devices. IMPACT STATEMENT: The oxygen ‘breathing’ behavior at the oxide/metal interface of filament-type resistive random access memory devices is operandoly detected using hard X-ray photoelectron spectroscopy as a diagnostic tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Loading...
Thumbnail Image
Item

Is the energy density a reliable parameter for materials synthesis by selective laser melting?

2017-3-9, Prashanth, K.G., Scudino, S., Maity, T., Das, J., Eckert, J.

The effective fabrication of materials using selective laser melting depends on the process parameters. Here, we analyse the suitability of the energy density to represent the energy transferred to the powder bed, which is effectively used to melt the particles and to produce the bulk specimens. By properly varying laser power and speed in order to process the powder at constant energy density, we show that the equation currently used to calculate the energy density gives only an approximate estimation and that hatch parameters and material properties should be considered to correctly evaluate the energy density.

Loading...
Thumbnail Image
Item

From statistic to deterministic nanostructures in fused silica induced by nanosecond laser radiation

2018, Lorenz, Pierre, Klöppel, Michael, Zagoranskiy, Igor, Zimmer, Klaus

The production of structures by laser machining below the diffraction limit is still a challenge. However, self-organization processes can be useful. The laser-induced self-organized modification of the shape of photolithographic produced chromium structures on fused silica as well as the structuring of the fused silica surface by nanosecond UV laser radiation was studied, respectively. Low fluence single pulse laser irradiation (□ > 300 mJ/cm2) cause the formation from chromium squares to droplets due to the mass transport in the molten chromium film. This process is governed by the instability of the molten metal due to the surface tension driven liquid phase mass transport. For a chromium pattern size similar to the instability length two specific droplet distributions were found which are single droplets with a determined position near the centre of the original pattern or random distributed smaller droplets arranged circularly. Each of the metal patterns can be transferred into the fused silica by a multi-pulse irradiation. The experimental results can be simulated well for low fluences by sequential solving the heat and Navier-Stokes equation.