Search Results

Now showing 1 - 10 of 12
  • Item
    Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies
    (Cambridge : RSC, 2021) Alghamdi, Majed; Gumbleton, Mark; Newland, Ben
    Glioblastoma (GBM) is the most aggressive malignant brain tumor and is associated with a very poor prognosis. The standard treatment for newly diagnosed patients involves total tumor surgical resection (if possible), plus irradiation and adjuvant chemotherapy. Despite treatment, the prognosis is still poor, and the tumor often recurs within two centimeters of the original tumor. A promising approach to improving the efficacy of GBM therapeutics is to utilize biomaterials to deliver them locally at the tumor site. Local delivery to GBM offers several advantages over systemic administration, such as bypassing the blood-brain barrier and increasing the bioavailability of the therapeutic at the tumor site without causing systemic toxicity. Local delivery may also combat tumor recurrence by maintaining sufficient drug concentrations at and surrounding the original tumor area. Herein, we critically appraised the literature on local delivery systems based within the following categories: polymer-based implantable devices, polymeric injectable systems, and hydrogel drug delivery systems. We also discussed the negative effect of hypoxia on treatment strategies and how one might utilize local implantation of oxygen-generating biomaterials as an adjuvant to enhance current therapeutic strategies. © 2021 The Royal Society of Chemistry.
  • Item
    On 1,3-phosphaazaallenes and their diverse reactivity
    (Cambridge : RSC, 2021) Fischer, Malte; Hering-Junghans, Christian
    1,3-Phosphaazaallenes are heteroallenes of the type RP-C-NR′ and little is known about their reactivity. In here we describe the straightforward synthesis of ArPCNR (Ar = Mes*, 2,4,6-tBu-C6H2;MesTer, 2.6-(2,4,6-Me3C6H2)-C6H3;DipTer, 2.6-(2,6-iPr2C6H2)-C6H3; R =tBu; Xyl, 2,6-Me2C6H3) starting from phospha-Wittig reagents ArPPMe3and isonitriles CNR. It is further shown that ArPCNtBu are thermally labile with respect to the loss of iso-butene and it is shown that the cyanophosphines ArP(H)CN are synthetically feasible and form the corresponding phosphanitrilium borates with B(C6F5)3, whereas deprotonation ofDipTerP(H)CN was shown to give an isolable cyanidophosphide. Lastly, the reactivity of ArPCNR towards Pier's borane was investigated, showing hydroboration of the C-N bond in Mes*PCNtBu to give a hetero-butadiene, while withDipTerPCNXyl the formation of the Lewis acid-base adduct with a B-P linkage was observed. © The Royal Society of Chemistry 2021.
  • Item
    An amino acid based system for CO2 capture and catalytic utilization to produce formates
    (Cambridge : RSC, 2021) Wei, Duo; Junge, Henrik; Beller, Matthias
    Herein, we report a novel amino acid based reaction system for CO2 capture and utilization (CCU) to produce formates in the presence of the naturally occurring amino acid l-lysine. Utilizing a specific ruthenium-based catalyst system, hydrogenation of absorbed carbon dioxide occurs with high activity and excellent productivity. Noteworthy, following the CCU concept, CO2 can be captured from ambient air in the form of carbamates and converted directly to formates in one-pot (TON > 50 000). This protocol opens new potential for transforming captured CO2 from ambient air to C1-related products. © 2021 The Royal Society of Chemistry.
  • Item
    Pd/Cu-Catalyzed amide-enabled selectivity-reversed borocarbonylation of unactivated alkenes
    (Cambridge : RSC, 2021) Wu, Fu-Peng; Wu, Xiao-Feng
    The addition reaction between CuBpin and alkenes to give a terminal boron substituted intermediate is usually fast and facile. In this communication, a selectivity-reversed procedure has been designed and established. This selectivity-reversed borocarbonylation reaction is enabled by a cooperative action between palladium and copper catalysts and proceeds with complete regioselectivity. The key to the success of this transformation is the coordination of the amide group and slower CuBpin formation by using KHCO3as the base. A wide range of β-boryl ketones were produced from terminal unactivated aliphatic alkenes and aryl iodides. Further synthetic transformations of the obtained β-boryl ketones have been developed as well. © The Royal Society of Chemistry 2021.
  • Item
    Stabilizing a three-center single-electron metal–metal bond in a fullerene cage
    (Cambridge : RSC, 2021) Jin, Fei; Xin, Jinpeng; Guan, Runnan; Xie, Xiao-Ming; Chen, Muqing; Zhang, Qianyan; Popov, Alexey A.; Xie, Su-Yuan; Yang, Shangfeng
    Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@Ih(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy–Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2−@C806− and features an unprecedented three-center single-electron Dy–Dy–Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@Ih(7)-C80 with a (Sc3)9+(C2)3−@C806− charge distribution and no metal–metal bonding.
  • Item
    Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release
    (Cambridge : RSC, 2021) Shi, Zhiyuan; Song, Qingchuan; Göstl, Robert; Herrmann, Andreas
    Drug delivery systems responsive to physicochemical stimuli allow spatiotemporal control over drug activity to overcome limitations of systemic drug administration. Alongside, the non-invasive real-time tracking of drug release and uptake remains challenging as pharmacophore and reporter function are rarely unified within one molecule. Here, we present an ultrasound-responsive release system based on the mechanochemically induced 5-exo-trigcyclization upon scission of disulfides bearing cargo molecules attachedviaβ-carbonate linker within the center of a water soluble polymer. In this bifunctional theranostic approach, we release one reporter molecule per drug molecule to quantitatively track drug release and distribution within the cell in real-time. We useN-butyl-4-hydroxy-1,8-naphthalimide and umbelliferone as fluorescent reporter molecules to accompany the release of camptothecin and gemcitabine as clinically employed anticancer agents. The generality of this approach paves the way for the theranostic release of a variety of probes and drugs by ultrasound. © The Royal Society of Chemistry 2020.
  • Item
    A general strategy for the synthesis of α-trifluoromethyl- and α-perfluoroalkyl-β-lactams via palladium-catalyzed carbonylation
    (Cambridge : RSC, 2021) Li, Yang; Zhang, Cai-Lin; Huang, Wei-Heng; Sun, Ning; Hao, Meng; Neumann, Helfried; Beller, Matthias
    β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-β-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated β-lactams in high yields. © The Royal Society of Chemistry 2021.
  • Item
    Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer
    (Cambridge : RSC, 2021) Zalibera, Michal; Ziegs, Frank; Schiemenz, Sandra; Dubrovin, Vasilii; Lubitz, Wolfgang; Savitsky, Anton; Deng, Shihu H.M.; Wang, Xue-Bin; Advoshenko, Stanislav M.; Popov, Alexey A.
    We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.
  • Item
    Correction: Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release
    (Cambridge : RSC, 2021) Shi, Zhiyuan; Song, Qingchuan; Göstl, Robert; Herrmann, Andreas
    Correction for ‘Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release’ by Zhiyuan Shi et al., Chem. Sci., 2021, 12, 1668–1674, DOI: 10.1039/D0SC06054B.
  • Item
    Indirect reduction of CO2 and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives, and polyurethanes
    (Cambridge : RSC, 2021) Liu, Xin; Werner, Thomas
    The reduction of polar bonds, in particular carbonyl groups, is of fundamental importance in organic chemistry and biology. Herein, we report a manganese pincer complex as a versatile catalyst for the transfer hydrogenation of amides, carbamates, urea derivatives, and even polyurethanes leading to the corresponding alcohols, amines, and methanol as products. Since these compound classes can be prepared using CO2as a C1 building block the reported reaction represents an approach to the indirect reduction of CO2. Notably, these are the first examples on the reduction of carbamates and urea derivatives as well as on the C-N bond cleavage in amides by transfer hydrogenation. The general applicability of this methodology is highlighted by the successful reduction of 12 urea derivatives, 26 carbamates and 11 amides. The corresponding amines, alcohols and methanol were obtained in good to excellent yields up to 97%. Furthermore, polyurethanes were successfully converted which represents a viable strategy towards a circular economy. Based on control experiments and the observed intermediates a feasible mechanism is proposed. © The Royal Society of Chemistry 2021.