Search Results

Now showing 1 - 10 of 307
  • Item
    Ni-In Synergy in CO2Hydrogenation to Methanol
    (Washington, DC : ACS Publications, 2021) Zhu, Jiadong; Cannizzaro, Francesco; Liu, Liang; Zhang, Hao; Kosinov, Nikolay; Filot, Ivo A.W.; Rabeah, Jabor; Brückner, Angelika; Hensen, Emiel J.M.
    Indium oxide (In2O3) is a promising catalyst for selective CH3OH synthesis from CO2but displays insufficient activity at low reaction temperatures. By screening a range of promoters (Co, Ni, Cu, and Pd) in combination with In2O3using flame spray pyrolysis (FSP) synthesis, Ni is identified as the most suitable first-row transition-metal promoter with similar performance as Pd-In2O3. NiO-In2O3was optimized by varying the Ni/In ratio using FSP. The resulting catalysts including In2O3and NiO end members have similar high specific surface areas and morphology. The main products of CO2hydrogenation are CH3OH and CO with CH4being only observed at high NiO loading (≥75 wt %). The highest CH3OH rate (∼0.25 gMeOH/(gcath), 250 °C, and 30 bar) is obtained for a NiO loading of 6 wt %. Characterization of the as-prepared catalysts reveals a strong interaction between Ni cations and In2O3at low NiO loading (≤6 wt %). H2-TPR points to a higher surface density of oxygen vacancy (Ov) due to Ni substitution. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electron paramagnetic resonance analysis of the used catalysts suggest that Ni cations can be reduced to Ni as single atoms and very small clusters during CO2hydrogenation. Supportive density functional theory calculations indicate that Ni promotion of CH3OH synthesis from CO2is mainly due to low-barrier H2dissociation on the reduced Ni surface species, facilitating hydrogenation of adsorbed CO2on Ov © 2021 The Authors. Published by American Chemical Society
  • Item
    Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale
    (Washington, DC : ACS Publications, 2021) Simon, Paul; Pompe, Wolfgang; Bobeth, Manfred; Worch, Hartmut; Kniep, Rüdiger; Formanek, Petr; Hild, Anne; Wenisch, Sabine; Sturm, Elena
    The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Persistent peri-Heptacene: Synthesis and In Situ Characterization
    (Weinheim : Wiley-VCH, 2021) Ajayakumar, M.R.; Ma, Ji; Lucotti, Andrea; Schellhammer, Karl Sebastian; Serra, Gianluca; Dmitrieva, Evgenia; Rosenkranz, Marco; Komber, Hartmut; Liu, Junzhi; Ortmann, Frank; Tommasini, Matteo; Feng, Xinliang
    n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    A General and Highly Selective Palladium-Catalyzed Hydroamidation of 1,3-Diynes
    (Weinheim : Wiley-VCH, 2021) Liu, Jiawang; Schneider, Carolin; Yang, Ji; Wei, Zhihong; Jiao, Haijun; Franke, Robert; Jackstell, Ralf; Beller, Matthias
    A chemo-, regio-, and stereoselective mono-hydroamidation of (un)symmetrical 1,3-diynes is described. Key for the success of this novel transformation is the utilization of an advanced palladium catalyst system with the specific ligand Neolephos. The synthetic value of this general approach to synthetically useful α-alkynyl-α, β-unsaturated amides is showcased by diversification of several structurally complex molecules and marketed drugs. Control experiments and density-functional theory (M06L-SMD) computations also suggest the crucial role of the substrate in controlling the regioselectivity of unsymmetrical 1,3-diynes. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer
    (Weinheim : Wiley-VCH, 2021) Liu, Kejun; Li, Jiang; Qi, Haoyuan; Hambsch, Mike; Rawle, Jonathan; Vázquez, Adrián Romaní; Nia, Ali Shaygan; Pashkin, Alexej; Schneider, Harald; Polozij, Mirosllav; Heine, Thomas; Helm, Manfred; Mannsfeld, Stefan C.B.; Kaiser, Ute; Dong, Renhao; Feng, Xinliang
    Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic–inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation–π interaction between 2DP and graphene. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhou, Yu; Huo, Shuaidong; Loznik, Mark; Göstl, Robert; Boersma, Arnold J.; Herrmann, Andreas
    Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications
    (Weinheim : Wiley-VCH, 2021) Steiner, Anja Maria; Lissel, Franziska; Fery, Andreas; Lauth, Jannika; Scheele, Marcus
    We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines
    (Berlin [u.a.] : Springer, 2021) Schymanski, Darena; Oßmann, Barbara E.; Benismail, Nizar; Boukerma, Kada; Dallmann, Gerald; von der Esch, Elisabeth; Fischer, Dieter; Fischer, Franziska; Gilliland, Douglas; Glas, Karl; Hofmann, Thomas; Käppler, Andrea; Lacorte, Sílvia; Marco, Julie; Rakwe, Maria El; Weisser, Jana; Witzig, Cordula; Zumbülte, Nicole; Ivleva, Natalia P.
    Microplastics are a widespread contaminant found not only in various natural habitats but also in drinking waters. With spectroscopic methods, the polymer type, number, size, and size distribution as well as the shape of microplastic particles in waters can be determined, which is of great relevance to toxicological studies. Methods used in studies so far show a huge diversity regarding experimental setups and often a lack of certain quality assurance aspects. To overcome these problems, this critical review and consensus paper of 12 European analytical laboratories and institutions, dealing with microplastic particle identification and quantification with spectroscopic methods, gives guidance toward harmonized microplastic particle analysis in clean waters. The aims of this paper are to (i) improve the reliability of microplastic analysis, (ii) facilitate and improve the planning of sample preparation and microplastic detection, and (iii) provide a better understanding regarding the evaluation of already existing studies. With these aims, we hope to make an important step toward harmonization of microplastic particle analysis in clean water samples and, thus, allow the comparability of results obtained in different studies by using similar or harmonized methods. Clean water samples, for the purpose of this paper, are considered to comprise all water samples with low matrix content, in particular drinking, tap, and bottled water, but also other water types such as clean freshwater.
  • Item
    Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhao, Pengkun; Huo, Shuaidong; Fan, Jilin; Chen, Junlin; Kiessling, Fabian; Boersma, Arnold J.; Göstl, Robert; Herrmann, Andreas
    The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH