Search Results

Now showing 1 - 10 of 511
  • Item
    Predicting the data structure prior to extreme events from passive observables using echo state network
    (Lausanne : Frontiers Media, 2022) Banerjee, Abhirup; Mishra, Arindam; Dana, Syamal K.; Hens, Chittaranjan; Kapitaniak, Tomasz; Kurths, Jürgen; Marwan, Norbert
    Extreme events are defined as events that largely deviate from the nominal state of the system as observed in a time series. Due to the rarity and uncertainty of their occurrence, predicting extreme events has been challenging. In real life, some variables (passive variables) often encode significant information about the occurrence of extreme events manifested in another variable (active variable). For example, observables such as temperature, pressure, etc., act as passive variables in case of extreme precipitation events. These passive variables do not show any large excursion from the nominal condition yet carry the fingerprint of the extreme events. In this study, we propose a reservoir computation-based framework that can predict the preceding structure or pattern in the time evolution of the active variable that leads to an extreme event using information from the passive variable. An appropriate threshold height of events is a prerequisite for detecting extreme events and improving the skill of their prediction. We demonstrate that the magnitude of extreme events and the appearance of a coherent pattern before the arrival of the extreme event in a time series affect the prediction skill. Quantitatively, we confirm this using a metric describing the mean phase difference between the input time signals, which decreases when the magnitude of the extreme event is relatively higher, thereby increasing the predictability skill.
  • Item
    Maximally dissipative solutions for incompressible fluid dynamics
    (Cham (ZG) : Springer International Publishing AG, 2021) Lasarzik, Robert
    We introduce the new concept of maximally dissipative solutions for a general class of isothermal GENERIC systems. Under certain assumptions, we show that maximally dissipative solutions are well-posed as long as the bigger class of dissipative solutions is non-empty. Applying this result to the Navier–Stokes and Euler equations, we infer global well-posedness of maximally dissipative solutions for these systems. The concept of maximally dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique.
  • Item
    Can One Series of Self-Organized Nanoripples Guide Another Series of Self-Organized Nanoripples during Ion Bombardment: From the Perspective of Power Spectral Density Entropy?
    (Basel : MDPI, 2023) Li, Hengbo; Li, Jinyu; Yang, Gaoyuan; Liu, Ying; Frost, Frank; Hong, Yilin
    Ion bombardment (IB) is a promising nanofabrication tool for self-organized nanostructures. When ions bombard a nominally flat solid surface, self-organized nanoripples can be induced on the irradiated target surface, which are called intrinsic nanoripples of the target material. The degree of ordering of nanoripples is an outstanding issue to be overcome, similar to other self-organization methods. In this study, the IB-induced nanoripples on bilayer systems with enhanced quality are revisited from the perspective of guided self-organization. First, power spectral density (PSD) entropy is introduced to evaluate the degree of ordering of the irradiated nanoripples, which is calculated based on the PSD curve of an atomic force microscopy image (i.e., the Fourier transform of the surface height. The PSD entropy can characterize the degree of ordering of nanoripples). The lower the PSD entropy of the nanoripples is, the higher the degree of ordering of the nanoripples. Second, to deepen the understanding of the enhanced quality of nanoripples on bilayer systems, the temporal evolution of the nanoripples on the photoresist (PR)/antireflection coating (ARC) and Au/ARC bilayer systems are compared with those of single PR and ARC layers. Finally, we demonstrate that a series of intrinsic IB-induced nanoripples on the top layer may act as a kind of self-organized template to guide the development of another series of latent IB-induced nanoripples on the underlying layer, aiming at improving the ripple ordering. The template with a self-organized nanostructure may alleviate the critical requirement for periodic templates with a small period of ~100 nm. The work may also provide inspiration for guided self-organization in other fields.
  • Item
    Newton and Bouligand derivatives of the scalar play and stop operator
    (Les Ulis : EDP Sciences, 2020) Brokate, Martin
    We prove that the play and the stop operator possess Newton and Bouligand derivatives, and exhibit formulas for those derivatives. The remainder estimate is given in a strengthened form, and a corresponding chain rule is developed. The construction of the Newton derivative ensures that the mappings involved are measurable. © The authors. Published by EDP Sciences, 2020.
  • Item
    Special issue on conceptual structures
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Alam, Mehwish; Braun, Tanya; Endres, Dominik; Yun, Bruno
    [no abstract available]
  • Item
    On complex dynamics in a Purkinje and a ventricular cardiac cell model
    (Amsterdam [u.a.] : Elsevier, 2020) Erhardt, André H.; Solem, Susanne
    Cardiac muscle cells can exhibit complex patterns including irregular behaviour such as chaos or (chaotic) early afterdepolarisations (EADs), which can lead to sudden cardiac death. Suitable mathematical models and their analysis help to predict the occurrence of such phenomena and to decode their mechanisms. The focus of this paper is the investigation of dynamics of cardiac muscle cells described by systems of ordinary differential equations. This is generically performed by studying a Purkinje cell model and a modified ventricular cell model. We find chaotic dynamics with respect to the leak current in the Purkinje cell model, and EADs and chaos with respect to a reduced fast potassium current and an enhanced calcium current in the ventricular cell model — features that have been experimentally observed and are known to exist in some models, but are new to the models under present consideration. We also investigate the related monodomain models of both systems to study synchronisation and the behaviour of the cells on macro-scale in connection with the discovered features. The models show qualitatively the same behaviour to what has been experimentally observed. However, for certain parameter settings the dynamics occur within a non-physiological range.
  • Item
    Topology- and Geometry-Controlled Functionalization of Nanostructured Metamaterials
    (Basel : MDPI, 2023) Fomin, Vladimir M.; Marquardt, Oliver
    [no abstract available]
  • Item
    How Price-Based Frequency Regulation Impacts Stability in Power Grids: A Complex Network Perspective
    (London : Hindawi, 2020) Ji, Peng; Zhu, Lipeng; Lu, Chao; Lin, Wei; Kurths, Jürgen
    With the deregulation of modern power grids, electricity markets are playing a more and more important role in power grid operation and control. However, it is still questionable how the real-time electricity price-based operation affects power grid stability. From a complex network perspective, here we investigate the dynamical interactions between price-based frequency regulations and physical networks, which results in an interesting finding that a local minimum of network stability occurs when the response strength of generators/consumers to the varying price increases. A case study of the real world-based China Southern Power Grid demonstrates the finding and exhibits a feasible approach to network stability enhancement in smart grids. This also provides guidance for potential upgrade and expansion of the current power grids in a cleaner and safer way. © 2020 Peng Ji et al.
  • Item
    Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains
    (Chichester, West Sussex : Wiley, 2020) Kovtunenko, Victor A.; Reichelt, Sina; Zubkova, Anna V.
    This paper is devoted to the homogenization of a nonlinear transmission problem stated in a two-phase domain. We consider a system of linear diffusion equations defined in a periodic domain consisting of two disjoint phases that are both connected sets separated by a thin interface. Depending on the field variables, at the interface, nonlinear conditions are imposed to describe interface reactions. In the variational setting of the problem, we prove the homogenization theorem and a bidomain averaged model. The periodic unfolding technique is used to obtain the residual error estimate with a first-order corrector. © 2019 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.
  • Item
    Extended multirate infinitesimal step methods: Derivation of order conditions
    (Amsterdam [u.a.] : Elsevier B.V., 2021) Bauer, Tobias Peter; Knoth, Oswald
    Multirate methods are specially designed for problems with multiple time scales. The multirate infinitesimal step method (MIS) was developed as a generalization of the so called split-explicit Runge–Kutta methods, where the integration of the fast part is conducted analytically. The MIS method was originally evolved for applications related to numerical weather prediction, i.e. the integration of the compressible Euler equation. In this work, an extension to MIS methods will be presented where an arbitrary Runge–Kutta method (RK) is applied for the integration of the fast component. Furthermore, the order convergence from the original MIS method will be reinvestigated including the derivation of conditions up to order four. Additionally will be presented how well-known methods such as recursive flux splitting multirate method, (Schlegel et al., 2012) partitioned Runge–Kutta method, (Jackiewicz and Vermiglio, 2000) and generalized additive Runge–Kutta method, (Sandu and Günther, 2015) are related to or can be cast as an extended MIS method. An exemplary MIS method of order four with five stages will show that the convergence behaviour not only depends on the applied method for the integration of the fast component. The method will further indicate that the used fast time step plays a significant role. © 2019 The Author(s)