Search Results

Now showing 1 - 2 of 2
  • Item
    The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Goelzer, Heiko; Nowicki, Sophie; Payne, Anthony; Larour, Eric; Seroussi, Helene; Lipscomb, William H.; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew; Simon, Erika; Agosta, Cécile; Alexander, Patrick; Aschwanden, Andy; Barthel, Alice; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin; Felikson, Denis; Fettweis, Xavier; Golledge, Nicholas R.; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Little, Chris; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Quiquet, Aurelien; Rückamp, Martin; Schlegel, Nicole-Jeanne; Slater, Donald A.; Smith, Robin S.; Straneo, Fiammetta; Tarasov, Lev; van de Wal, Roderik; van den Broeke, Michiel
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.
  • Item
    Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
    (Göttingen : Copernicus Publ., 2022) Zeitz, Maria; Haacker, Jan M.; Donges, Jonathan F.; Albrecht, Torsten; Winkelmann, Ricarda
    The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50000years, and the ice volume stabilizes at 61-93 of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74000 and over 300000 years and oscillation amplitudes between 15-70 of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100000years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future"and, thus, long-term resilience of the Greenland Ice Sheet.