Search Results

Now showing 1 - 10 of 51
  • Item
    Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients
    (Basel : MDPI, 2021) Osei, Eric Boateng; Paniushkina, Liliia; Wilhelm, Konrad; Popp, Jürgen; Nazarenko, Irina; Krafft, Christoph
    Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.
  • Item
    Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields
    (Basel : MDPI, 2022) Wolff, Christina M.; Kolb, Juergen F.; Bekeschus, Sander
    In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
  • Item
    Supramolecular organization as a factor of ribonuclease cytotoxicity
    (Moscow : Park Media, 2020) Dudkina, Elena V.; Ulyanova, Vera V.; Ilinskaya, Olga N.
    One of the approaches used to eliminate tumor cells is directed destruction/modification of their RNA molecules. In this regard, ribonucleases (RNases) possess a therapeutic potential that remains largely unexplored. It is believed that the biological effects of secreted RNases, namely their antitumor and antiviral properties, derive from their catalytic activity. However, a number of recent studies have challenged the notion that the activity of RNases in the manifestation of selective cytotoxicity towards cancer cells is exclusively an enzymatic one. In this review, we have analyzed available data on the cytotoxic effects of secreted RNases, which are not associated with their catalytic activity, and we have provided evidence that the most important factor in the selective apoptosis-inducing action of RNases is the structural organization of these enzymes, which determines how they interact with cell components. The new idea on the preponderant role of non-catalytic interactions between RNases and cancer cells in the manifestation of selective cytotoxicity will contribute to the development of antitumor RNase-based drugs.
  • Item
    Self-Adhesive Silicone Microstructures for the Treatment of Tympanic Membrane Perforations
    (Weinheim : Wiley-VCH, 2021) Lana, Gabriela Moreira; Sorg, Katharina; Wenzel, Gentiana Ioana; Hecker, Dietmar; Hensel, René; Schick, Bernhard; Kruttwig, Klaus; Arzt, Eduard
    Inspired by the gecko foot, polymeric microstructures have demonstrated reliable dry adhesion to both stiff objects and sensitive surfaces such as skin. Microstructured silicone patches are proposed, herein, for the treatment of tympanic membrane perforations with the aim of serving as an alternative for current surgical procedures that require anesthesia and ear canal packing. Sylgard 184 PDMS micropillars of 20 μm in diameter and 60 μm in length are topped by a Soft Skin Adhesive (SSA) MG7-1010 terminal layer, of about 25 μm thickness. The adhesion is evaluated by specially designed tack tests against explanted murine eardrums and, for comparison, against a rigid substrate. Functional effects are evaluated using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAE). The adhesion strength of the microstructure and unstructured controls to explanted murine tympanic membranes is comparable (typically 12 kPa), but the microstructured patches are easier to handle by the surgeon. For the first time, partial recovery of hearing performance is measured immediately after patch application. The novel patches adhere without the need for further fixation, removing the need for ear canal packing. The proposed material design holds great promise for improving clinical treatments of tympanic membrane perforations.
  • Item
    Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments
    (Maryland Heights, MO : Cell Press, 2020) Rujas, Edurne; Insausti, Sara; Leaman, Daniel P.; Carravilla, Pablo; González-Resines, Saul; Monceaux, Valérie; Sánchez-Eugenia, Rubén; Garcıá-Porras, Miguel; Iloro, Ibon; Zhang, Lei; Elortza, Félix; Julien, Jean-Philippe; Saéz-Cirión, Asier; Zwick, Michael B.; Eggeling, Christian; Ojida, Akio; Domene, Carmen; Caaveiro, Jose M.M.; Nieva, José L.
    The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes. © 2020 The Author(s)Rujas et al. describe the site-selective chemical modification of antibodies to improve the molecular recognition of epitopes at membrane surfaces. The modification using aromatic compounds dramatically enhanced the virus neutralization potency and native antigen binding efficiency of HIV-1 antibodies directed against the membrane-embedded MPER epitope. © 2020 The Author(s)
  • Item
    Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells
    (Cham (ZG) : Springer International Publishing AG, 2022) Rath, Matthias; Schwefel, Konrad; Malinverno, Matteo; Skowronek, Dariush; Leopoldi, Alexandra; Pilz, Robin A.; Biedenweg, Doreen; Bekeschus, Sander; Penninger, Josef M.; Dejana, Elisabetta; Felbor, Ute
    Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3−/− endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.
  • Item
    Flotillin-Dependent Membrane Microdomains Are Required for Functional Phagolysosomes against Fungal Infections
    (Maryland Heights, MO : Cell Press, 2020) Schmidt, Franziska; Thywißen, Andreas; Goldmann, Marie; Cunha, Cristina; Cseresnyés, Zoltán; Schmidt, Hella; Rafiq, Muhammad; Galiani, Silvia; Gräler, Markus H.; Chamilos, Georgios; Lacerda, João; Campos, António, Jr.; Eggeling, Christian; Figge, Marc Thilo; Heinekamp, Thorsten; Filler, Scott G.; Carvalho, Agostinho; Brakhage, Axel A.
    Schmidt el al. show that lipid rafts in phagolysosomal membranes of macrophages depend on flotillins. Lipid rafts are required for assembly of vATPase and NADPH oxidase. Conidia of the human-pathogenic fungus Aspergillus fumigatus dysregulate assembly of flotillin-dependent lipid rafts in the phagolysosomal membrane and can thereby escape phagolysosomal digestion. © 2020 The Author(s)Lipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid-raft microdomains are essential components of phagolysosomal membranes of macrophages and depend on flotillins. Genetic deletion of flotillins demonstrates that the assembly of both major defense complexes vATPase and NADPH oxidase requires membrane microdomains. Furthermore, we describe a virulence mechanism leading to dysregulation of membrane microdomains by melanized wild-type conidia of the important human-pathogenic fungus Aspergillus fumigatus resulting in reduced phagolysosomal acidification. We show that phagolysosomes with ingested melanized conidia contain a reduced amount of free Ca2+ ions and that inhibition of Ca2+-dependent calmodulin activity led to reduced lipid-raft formation. We identify a single-nucleotide polymorphism in the human FLOT1 gene resulting in heightened susceptibility for invasive aspergillosis in hematopoietic stem cell transplant recipients. Collectively, flotillin-dependent microdomains on the phagolysosomal membrane play an essential role in protective antifungal immunity. © 2020 The Author(s)
  • Item
    During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes
    (Maryland Heights, MO : Cell Press, 2022) Pylaeva, Ekaterina; Korschunow, Georg; Spyra, Ilona; Bordbari, Sharareh; Siakaeva, Elena; Ozel, Irem; Domnich, Maksim; Squire, Anthony; Hasenberg, Anja; Thangavelu, Kruthika; Hussain, Timon; Goetz, Moritz; Lang, Karl S; Gunzer, Matthias; Hansen, Wiebke; Buer, Jan; Bankfalvi, Agnes; Lang, Stephan; Jablonska, Jadwiga
    Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.
  • Item
    Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro
    (Heidelberg : Springer, 2022) Le-Trilling, Vu Thuy Khanh; Mennerich, Denise; Schuler, Corinna; Sakson, Roman; Lill, Julia K.; Kasarla, Siva Swapna; Kopczynski, Dominik; Loroch, Stefan; Flores-Martinez, Yulia; Katschinski, Benjamin; Wohlgemuth, Kerstin; Gunzer, Matthias; Meyer, Folker; Phapale, Prasad; Dittmer, Ulf; Sickmann, Albert; Trilling, Mirko
    Background: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. Results: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. Conclusions: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.
  • Item
    Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents
    ([Bejing] : KeAi Publishing, 2021) Ma, Qing; Shi, Xiuying; Tan, Xing; Wang, Rui; Xiong, Kaiqin; Maitz, Manfred F.; Cui, Yuanyuan; Hu, Zhangmei; Tu, Qiufen; Huang, Nan; Shen, Li; Yang, Zhilu
    Mimicking the nitric oxide (NO)-release and glycocalyx functions of native vascular endothelium on cardiovascular stent surfaces has been demonstrated to reduce in-stent restenosis (ISR) effectively. However, the practical performance of such an endothelium-mimicking surfaces is strictly limited by the durability of both NO release and bioactivity of the glycocalyx component. Herein, we present a mussel-inspired amine-bearing adhesive coating able to firmly tether the NO-generating species (e.g., Cu-DOTA coordination complex) and glycocalyx-like component (e.g., heparin) to create a durable endothelium-mimicking surface. The stent surface was firstly coated with polydopamine (pDA), followed by a surface chemical cross-link with polyamine (pAM) to form a durable pAMDA coating. Using a stepwise grafting strategy, Cu-DOTA and heparin were covalently grafted on the pAMDA-coated stent based on carbodiimide chemistry. Owing to both the high chemical stability of the pAMDA coating and covalent immobilization manner of the molecules, this proposed strategy could provide 62.4% bioactivity retention ratio of heparin, meanwhile persistently generate NO at physiological level from 5.9 ± 0.3 to 4.8 ± 0.4 × 10−10 mol cm−2 min−1 in 1 month. As a result, the functionalized vascular stent showed long-term endothelium-mimicking physiological effects on inhibition of thrombosis, inflammation, and intimal hyperplasia, enhanced re-endothelialization, and hence efficiently reduced ISR.