Search Results

Now showing 1 - 2 of 2
  • Item
    Former Training Relieves the Later Development of Behavioral Inflexibility in an Animal Model Overexpressing the Dopamine Transporter
    (Totowa, NJ : Humana Press, 2022) Edemann-Callesen, Henriette; Glienke, Maximilian; Akinola, Esther Olubukola; Lieser, Maike Kristin; Habelt, Bettina; Hadar, Ravit; Bernhardt, Nadine; Winter, Christine
    A range of dopamine-dominating neuropsychiatric disorders present with cognitive deficits. In accordance, the dopamine transporter overexpressing rat model (DAT-tg rat) displays cognitive deficits by means of behavioral inflexibility and learning disabilities. It remains to be investigated when cognitive deficits emerge, due to the inherent DA irregularities, during the life course of the DAT-tg rat and what may relieve symptoms. The Morris water maze (MWM) was used to assess cognitive abilities in three cohorts of DAT-tg rats. In the first cohort, the development of cognitive deficits was assessed by repeatedly testing animals in the MWM at postnatal day (PND) 35, 60, and 90. In the second and third cohort, pharmacological interventions and transcranial direct current stimulation (tDCS) were tested in adult animals to understand what drives, and thus relieves, the deficits. Minor differences were observed between DAT-tg rats and control rats at PND 35 and 60, whereas cognitive deficits fully emerged at PND 90. A high dosage of methylphenidate diminished both behavioral inflexibility and improved learning abilities in adult rats. Interestingly, rats subjected early in life to the MWM also displayed improved behavioral flexibility as compared to rats naïve to the paradigm. Cognitive deficits gradually develop over time and fully emerge in adulthood. Pharmacological modulation of the ubiquitous DAT overexpression overall improves deficits in adult rats, whereas early training decreases later development of behavioral inflexibility. Thus, former training may constitute a preventive avenue that alters some aspects of cognitive deficits resulting from inherent DA abnormalities.
  • Item
    A Homozygous PPP1R21 Splice Variant Associated with Severe Developmental Delay, Absence of Speech, and Muscle Weakness Leads to Activated Proteasome Function
    (Totowa, NJ : Humana Press, 2023) Hentschel, Andreas; Meyer, Nancy; Kohlschmidt, Nicolai; Groß, Claudia; Sickmann, Albert; Schara-Schmidt, Ulrike; Förster, Fabian; Töpf, Ana; Christiansen, Jon; Horvath, Rita; Vorgerd, Matthias; Thompson, Rachel; Polaparapu, Kiran; Lochmüller, Hanns; Preusse, Corinna; Hannappel, Luis; Schänzer, Anne; Grüneboom, Anika; Gangfuß, Andrea; Roos, Andreas
    PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin–proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.