Search Results

Now showing 1 - 4 of 4
  • Item
    Draft Genome Sequence of a New Oscillospiraceae Bacterium Isolated from Anaerobic Digestion of Biomass
    (Washington, DC : American Society for Microbiology, 2020) Pascual, Javier; Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    Here, we present the genome sequence and annotation of the novel bacterial strain HV4-5-C5C, which may represent a new genus within the family Oscillospiraceae (order Eubacteriales). This strain is a potential keystone species in the hydrolysis of complex polymers during anaerobic digestion of biomass. © 2020 Pascual et al.
  • Item
    Complete genome sequence of a new clostridium sp. isolated from anaerobic digestion and biomethanation
    (Washington, DC : American Society for Microbiology, 2020) Hahnke, Sarah; Abendroth, Christian; Pascual, Javier; Langer, Thomas; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    Here, we present the genome sequence and annotation of the bacterial strain HV4-5-A1G, a potentially new Clostridium species. Based on its genomic data, this strain may act as a keystone microorganism in the hydrolysis of complex polymers, as well as in the different acidogenesis and acetogenesis steps during anaerobic digestion. © 2020 Hahnke et al.
  • Item
    Protein Microarray-Guided Development of a Highly Sensitive and Specific Dipstick Assay for Glanders Serodiagnostics
    (Washington, DC : American Society for Microbiology, 2022) Wagner, Gabriel E.; Berner, Andreas; Lipp, Michaela; Kohler, Christian; Assig, Karoline; Lichtenegger, Sabine; Saqib, Muhammad; Müller, Elke; Trinh, Trung T.; Gad, Anne-Marie; Söffing, Hans Hermann; Ehricht, Ralf; Laroucau, Karine; Steinmetz, Ivo
    Burkholderia mallei, the causative agent of glanders, is a clonal descendant of Burkholderia pseudomallei, the causative agent of melioidosis, which has lost its environmental reservoir and has a restricted host range. Despite limitations in terms of sensitivity and specificity, complement fixation is still the official diagnostic test for glanders. Therefore, new tools are needed for diagnostics and to study the B. mallei epidemiology. We recently developed a highly sensitive serodiagnostic microarray test for human melioidosis based on the multiplex detection of B. pseudomallei proteins. In this study, we modified our array tests by using anti-horse IgG conjugate and tested sera from B. mallei-infected horses (n = 30), negative controls (n = 39), and horses infected with other pathogens (n = 14). Our array results show a sensitivity of 96.7% (confidence interval [CI] 85.5 to 99.6%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The reactivity pattern of the positive sera on our array test allowed us to identify a set of 12 highly reactive proteins of interest for glanders diagnosis. The B. mallei variants of the three best protein candidates were selected for the development of a novel dipstick assay. Our point-of-care test detected glanders cases in less than 15 min with a sensitivity of 90.0% (CI, 75.7 to 97.1%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The microarray and dipstick can easily be adopted for the diagnosis of both B. mallei and B. pseudomallei infections in different animals. Future studies will show whether multiplex serological testing has the potential to differentiate between these pathogens.
  • Item
    Complete genome sequence of a new Bacteroidaceae bacterium isolated from anaerobic biomass digestion
    (Washington, DC : American Society for Microbiology, 2020) Hahnke, Sarah; Abendroth, Christian; Pascual, Javier; Langer, Thomas; Codoñer, Francisco M.; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcare, Manuel
    Here, we present the genome sequence and annotation of HV4-6-C5C, a bacterial strain isolated from a mesophilic two-stage laboratory-scale leach bed biogas reactor system. Strain HV4-6-C5C may represent a new genus of the family Bacteroidaceae and may have a key role in acidogenesis and acetogenesis steps during anaerobic biomass digestion. © 2019 Hahnke et al.