Search Results

Now showing 1 - 10 of 32
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Mechanically Stable, Binder‐Free, and Free‐Standing Vanadium Trioxide/Carbon Hybrid Fiber Electrodes for Lithium‐Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Bornamehr, Behnoosh; Gallei, Markus; Husmann, Samantha; Presser, Volker
    Binder is a crucial component in present-day battery electrodes but commonly contains fluorine and requires coating processing using organic (often toxic) solvents. Preparing binder-free electrodes is an attractive strategy to make battery electrode production and its end-of-use waste greener and safer. Herein, electrospinning is employed to prepare binder-free and self-standing electrodes. Such electrodes often suffer from low flexibility, and the correlation between performance and flexibility is usually overlooked. Processing parameters affect the mechanical properties of the electrodes, and for the first time it is reported that mechanical flexibility directly influences the electrochemical performance of the electrode. The importance is highlighted when processing parameters advantageous to powder materials, such as a higher heat treatment temperature, harm self-standing electrodes due to deterioration of fiber flexibility. Other strategies, such as conductive carbon addition, can be employed to improve the cell performance, but their effect on the mechanical properties of the electrodes must be considered. Rapid heat treatment achieves self-standing V2O3 with a capacity of 250 mAh g−1 at 250 mA g−1 and 390 mAh g−1 at 10 mA g−1
  • Item
    In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers
    (Weinheim : Wiley-VCH, 2020) Mendes, Rafael Gregorio; Ta, Huy Quang; Yang, Xiaoqin; Li, Wei; Bachmatiuk, Alicja; Choi, Jin-Ho; Gemming, Thomas; Anasori, Babak; Lijun, Liu; Fu, Lei; Liu, Zhongfan; Rümmeli, Mark Hermann
    Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light
    (Weinheim : Wiley-VCH, 2020) Wolff, Niklas; Ciobanu, Vladimir; Enachi, Mihail; Kamp, Marius; Braniste, Tudor; Duppel, Viola; Shree, Sindu; Raevschi, Simion; Medina-Sánchez, Mariana; Adelung, Rainer; Schmidt, Oliver G.; Kienle, Lorenz; Tiginyanu, Ion
    The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1– xZnx)(N1– xOx) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Switching Propulsion Mechanisms of Tubular Catalytic Micromotors
    (Weinheim : Wiley-VCH, 2021) Wrede, Paul; Medina-Sánchez, Mariana; Fomin, Vladimir M.; Schmidt, Oliver G.
    Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.
  • Item
    Density-Dependence of Surface Transport in Tellurium-Enriched Nanograined Bulk Bi2Te3
    (Weinheim : Wiley-VCH, 2023) Izadi, Sepideh; Bhattacharya, Ahana; Salloum, Sarah; Han, Jeong Woo; Schnatmann, Lauritz; Wolff, Ulrike; Perez, Nicolas; Bendt, Georg; Ennen, Inga; Hütten, Andreas; Nielsch, Kornelius; Schulz, Stephan; Mittendorff, Martin; Schierning, Gabi
    Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.
  • Item
    Bioactive Nanogels Mimicking the Antithrombogenic Nitric Oxide-Release Function of the Endothelium
    (Weinheim : Wiley-VCH, 2023) Hosseinnejad, Aisa; Ludwig, Nadine; Mersmann, Sina; Winnerbach, Patrick; Bleilevens, Christian; Rossaint, Rolf; Rossaint, Jan; Singh, Smriti
    Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5′-diphosphate, and U46619 (thromboxane A2 mimetic).
  • Item
    Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers
    (Weinheim : Wiley-VCH, 2023) Turishchev, Sergey; Schleusener, Alexander; Chuvenkova, Olga; Parinova, Elena; Liu, Poting; Manyakin, Maxim; Kurganskii, Sergei; Sivakov, Vladimir
    The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal–organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation. The “one spot” combination, containing a chemically sensitive morphology and spectroscopic data, is examined via photoemission electron microscopy in the X-ray absorption near-edge structure spectroscopy (XANES) mode. The observed spectromicroscopy results showed that the entire SiNW surface is covered with a tin(IV) oxide layer and traces of tin(II) oxide and metallic tin phases. The deviation from stoichiometric SnO2 leads to the formation of the density of states sub-band in the atop tin oxide layer bandgap close to the bottom of the SnO2 conduction band. These observations open up the possibility of the precise surface electronic structures estimation using photo-electron microscopy in XANES mode.
  • Item
    Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation
    (Weinheim : Wiley-VCH, 2021) Wen, Ping; Wang, Xueyi; Moreno, Silvia; Boye, Susanne; Voigt, Dagmar; Voit, Brigitte; Huang, Xin; Appelhans, Dietmar
    The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
  • Item
    Reconstruction of Ultra-thin Alveolar-capillary Basement Membrane Mimics
    (Weinheim : Wiley-VCH, 2021) Jain, Puja; Nishiguchi, Akihiro; Linz, Georg; Wessling, Matthias; Ludwig, Andreas; Rossaint, Rolf; Möller, Martin; Singh, Smriti
    Alveolar-capillary basement membrane (BM) is ultra-thin (<2 µm) extracellular matrix that maintains integral epithelial-endothelial cell layers. In vitro reconstructions of alveolar-capillary barrier supported on synthetic scaffolds closely resembling the fibrous and ultra-thin natural BM are essential in mimicking the lung pathophysiology. Although BM topology and dimensions are well known to significantly influence cellular behavior, conventionally used BM mimics fail to recreate this natural niche. To overcome this, electrospun ultra-thin 2 µm poly(caprolactone) (PCL) nanofibrous mesh is used to establish an alveolar-capillary barrier model of lung endothelial/epithelial cells. Transepithelial electrical resistance (TEER) and permeability studies reveal integral tight junctions and improved mass transport through the highly porous PCL meshes compared to conventional dense membranes with etched pores. The chemotaxis of neutrophils is shown across the barrier in presence of inflammatory response that is naturally impeded in confined regions. Conventional requirement of 3 µm or larger pore size can lead to barrier disruption due to epithelial/endothelial cell invasion. Despite high porosity, the interconnected BM mimic prevents barrier disruption and allows neutrophil transmigration, thereby demonstrating the physiological relevance of the thin nanofibrous meshes. It is envisioned that these bipolar cultured barriers would contribute to an organ-level in vitro model for pathological disease, environmental pollutants, and nanotoxicology. © 2021 The Authors. Advanced Biology published by Wiley-VCH GmbH