Search Results

Now showing 1 - 10 of 46
  • Item
    Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch
    (Hoboken, NJ : Wiley, 2020) Casanueva, Ana; Herrera, Sixto; Iturbide, Maialen; Lange, Stefan; Jury, Martin; Dosio, Alessandro; Maraun, Douglas; Gutiérrez, José M.
    Systematic biases in climate models hamper their direct use in impact studies and, as a consequence, many statistical bias adjustment methods have been developed to calibrate model outputs against observations. The application of these methods in a climate change context is problematic since there is no clear understanding on how these methods may affect key magnitudes, for example, the climate change signal or trend, under different sources of uncertainty. Two relevant sources of uncertainty, often overlooked, are the sensitivity to the observational reference used to calibrate the method and the effect of the resolution mismatch between model and observations (downscaling effect). In the present work, we assess the impact of these factors on the climate change signal of temperature and precipitation considering marginal, temporal and extreme aspects. We use eight standard and state-of-the-art bias adjustment methods (spanning a variety of methods regarding their nature—empirical or parametric—, fitted parameters and trend-preservation) for a case study in the Iberian Peninsula. The quantile trend-preserving methods (namely quantile delta mapping (QDM), scaled distribution mapping (SDM) and the method from the third phase of ISIMIP-ISIMIP3) preserve better the raw signals for the different indices and variables considered (not all preserved by construction). However, they rely largely on the reference dataset used for calibration, thus presenting a larger sensitivity to the observations, especially for precipitation intensity, spells and extreme indices. Thus, high-quality observational datasets are essential for comprehensive analyses in larger (continental) domains. Similar conclusions hold for experiments carried out at high (approximately 20 km) and low (approximately 120 km) spatial resolutions. © 2020 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
  • Item
    Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook
    (Hoboken, NJ : Wiley, 2021) Lu, Q.; Jie, Y.; Meng, X.; Omar, A.; Mikhailova, D.; Cao, R.; Jiao, S.; Lu, Y.; Xu, Y.
    Lithium (Li) metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential. However, the Li metal anode has limitations, including virtually infinite volume change, nonuniform Li deposition, and an unstable electrode–electrolyte interface, which lead to rapid capacity degradation and poor cycling stability, significantly hindering its practical application. To address these issues, intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials, which have demonstrated excellent effectiveness, benefiting from their vast variety and excellent tunability of the structure–property relationship. This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials. The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail. Apart from the stabilization of the Li metal anode in liquid electrolytes, attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials. Furthermore, we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications.
  • Item
    Architecture engineering of carbonaceous anodes for high‐rate potassium‐ion batteries
    (Hoboken, NJ : Wiley, 2021) Wu, Tianlai; Zhang, Weicai; Yang, Jiaying; Lu, Qiongqiong; Peng, Jing; Zheng, Mingtao; Xu, Fei; Liu, Yingliang; Liang, Yeru
    The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium‐ion battery. Potassium‐ion batteries (KIBs) are regarded as a kind of promising candidate for large‐scale energy storage owing to the high abundance and low cost of potassium resources. Nevertheless, further development and wide application of KIBs are still challenged by several obstacles, one of which is their fast capacity deterioration at high rates. A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies. This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high‐rate performances for KIBs, and also the beneficial conceptions are consciously extracted from the recent progress. Particularly, basic insights into the recent engineering strategies, structural innovation, and the related advances of carbonaceous anodes for high‐rate KIBs are under specific concerns. Based on the achievements attained so far, a perspective on the foregoing, and proposed possible directions, and avenues for designing high‐rate anodes, are presented finally.
  • Item
    Flexible MXene films for batteries and beyond
    (Hoboken, NJ : Wiley, 2022) Huang, Yang; Lu, Qiongqiong; Wu, Dianlun; Jiang, Yue; Liu, Zhenjie; Chen, Bin; Zhu, Minshen; Schmidt, Oliver G.
    MXenes add dozens of metallic conductors to the family of two-dimensional (2D) materials. A top-down synthesis approach removing A-layer atoms (e.g., Al, Si, and Ga) in MAX phases to produce 2D flakes attaches various surface terminations to MXenes. With these terminations, MXenes show tunable properties, promising a range of applications from energy storage devices to electronics, including sensors, transistors, and antennas. MXenes are also excellent building blocks to create flexible films used for flexible and wearable devices. This article summarizes the synthesis of MXene flakes and highlights aspects that need attention for flexible devices. Rather than listing the development of energy storage devices in detail, we focus on the main challenges of and solutions for constructing high-performance devices. Moreover, we show the applications of MXene films in electronics to call on designs to construct a complete system based on MXene with good flexibility, which consists of a power source, sensors, transistors, and wireless communications.
  • Item
    ZonalWave Number Diagnosis of RossbyWave-Like Oscillations Using Paired Ground-Based Radars
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Yamazaki, Yosuke; Hoffmann, Peter; Hall, Chris M.; Tsutsumi, Masaki; Li, Guozhu; Chau, Jorge Luis
    Free traveling Rossby wave normal modes (RNMs) are often investigated through large-scale space-time spectral analyses, which therefore is subject to observational availability, especially in the mesosphere. Ground-based mesospheric observations were broadly used to identify RNMs mostly according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses zonal wave numbers of RNM-like oscillations occurring in mesospheric winds observed by two meteor radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events (SSWs) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal wave number m=1, excepting one 16-day oscillation associated with m=2. We discuss the m=1 oscillations as transient RNMs and the m=2 oscillation as a secondary wave of nonlinear interaction between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs, suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a similar network at 54°N during 2012–2016. Explored is a manifestation of 5-day wave, namely, an oscillation at 5–7 days with m=1), around the onset of SSW 2013, supporting the associations between RNMs and SSWs. ©2020. The Authors.
  • Item
    Synthesis and characterization of poly(1,2,3-triazole)s with inherent high sulfur content for optical applications
    (Hoboken, NJ : Wiley, 2023) Mazumder, Kajari; Komber, Hartmut; Bittrich, Eva; Voit, Brigitte; Banerjee, Susanta
    The synthesis of solution-processable sulfur-containing polytriazoles for optoelectronic applications is a relatively less explored domain in polymer research. The synthesis of novel bifunctional (DA) and trifunctional (TA) azido-monomers with inherent high sulfur content and of organo-soluble high refractive index poly(1,2,3-triazole)s using the azido-monomers via Cu(I) assisted click polymerization reactions are reported in this work. The azido-monomers were synthesized by the conversion of previously reported amine-functionalized compounds to azides using azidotrimethylsilane in a polar aprotic solvent. Dialkyne monomers were also synthesized and reacted with the azides to prepare a series of five linear and two hyperbranched poly(1,2,3-triazole)s. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermogravimetric analysis were used to characterize the synthesized polymers. It was also demonstrated that the use of the trifunctional azide in optimized conditions resulted in increased solubility of an otherwise insoluble linear poly(1,2,3-triazole). The optical characterization of the polymers was carried out on thin polymer films with thickness in the nanometer range, which were successfully prepared by spin-coating on silicon wafers. It was found that the increase in the sulfur and aromatic content in the polymer backbone successfully increased the refractive index of the polymers up to 1.743 at 589 nm.
  • Item
    Investigating Mesozoic Climate Trends and Sensitivities With a Large Ensemble of Climate Model Simulations
    (Hoboken, NJ : Wiley, 2021) Landwehrs, Jan; Feulner, Georg; Petri, Stefan; Sames, Benjamin; Wagreich, Michael
    The Mesozoic era (∼252 to 66 million years ago) was a key interval in Earth's evolution toward its modern state, witnessing the breakup of the supercontinent Pangaea and significant biotic innovations like the early evolution of mammals. Plate tectonic dynamics drove a fundamental climatic transition from the early Mesozoic supercontinent toward the Late Cretaceous fragmented continental configuration. Here, key aspects of Mesozoic long-term environmental changes are assessed in a climate model ensemble framework. We analyze so far the most extended ensemble of equilibrium climate states simulated for evolving Mesozoic boundary conditions covering the period from 255 to 60 Ma in 5 Myr timesteps. Global mean temperatures are generally found to be elevated above the present and exhibit a baseline warming trend driven by rising sea levels and increasing solar luminosity. Warm (Triassic and mid-Cretaceous) and cool (Jurassic and end-Cretaceous) anomalies result from pCO2 changes indicated by different reconstructions. Seasonal and zonal temperature contrasts as well as continental aridity show an overall decrease from the Late Triassic-Early Jurassic to the Late Cretaceous. Meridional temperature gradients are reduced at higher global temperatures and less land area in the high latitudes. With systematic sensitivity experiments, the influence of paleogeography, sea level, vegetation patterns, pCO2, solar luminosity, and orbital configuration on these trends is investigated. For example, long-term seasonality trends are driven by paleogeography, but orbital cycles could have had similar-scale effects on shorter timescales. Global mean temperatures, continental humidity, and meridional temperature gradients are, however, also strongly affected by pCO2.
  • Item
    Increasing Resolution and Resolving Convection Improve the Simulation of Cloud-Radiative Effects Over the North Atlantic
    (Hoboken, NJ : Wiley, 2020) Senf, Fabian; Voigt, Aiko; Clerbaux, Nicolas; Hünerbein, Anja; Deneke, Hartwig
    Clouds interact with atmospheric radiation and substantially modify the Earth's energy budget. Cloud formation processes occur over a vast range of spatial and temporal scales, which make their thorough numerical representation challenging. Therefore, the impact of parameter choices for simulations of cloud-radiative effects is assessed in the current study. Numerical experiments are carried out using the ICOsahedral Nonhydrostatic (ICON) model with varying grid spacings between 2.5 and 80 km and with different subgrid-scale parameterization approaches. Simulations are performed over the North Atlantic with either one-moment or two-moment microphysics and with convection being parameterized or explicitly resolved by grid-scale dynamics. Simulated cloud-radiative effects are compared to products derived from Meteosat measurements. Furthermore, a sophisticated cloud classification algorithm is applied to understand the differences and dependencies of simulated and observed cloud-radiative effects. The cloud classification algorithm developed for the satellite observations is also applied to the simulation output based on synthetic infrared brightness temperatures, a novel approach that is not impacted by changing insolation and guarantees a consistent and fair comparison. It is found that flux biases originate equally from clear-sky and cloudy parts of the radiation field. Simulated cloud amounts and cloud-radiative effects are dominated by marine, shallow clouds, and their behavior is highly resolution dependent. Bias compensation between shortwave and longwave flux biases, seen in the coarser simulations, is significantly diminished for higher resolutions. Based on the analysis results, it is argued that cloud-microphysical and cloud-radiative properties have to be adjusted to further improve agreement with observed cloud-radiative effects. © 2020. The Authors.
  • Item
    Evidence for the In‐Situ Generation of Plasma Depletion Structures Over the Transition Region of Geomagnetic Low‐Mid Latitude
    (Hoboken, NJ : Wiley, 2021) Sivakandan, M.; Mondal, S.; Sarkhel, S.; Chakrabarty, D.; Sunil Krishna, M.V.; Upadhayaya, A.K.; Shinbori, A.; Sori, T.; Kannaujiya, S.; Champati Ray, P.K.
    On a geomagnetic quiet night of October 29, 2018, we captured an observational evidence of the onset of dark band structures within the field-of-view of an all-sky airglow imager operating at 630.0 nm over a geomagnetic low-mid latitude transition region, Hanle, Leh Ladakh. Simultaneous ionosonde observations over New Delhi shows the occurrence of spread-F in the ionograms. Additionally, virtual and peak height indicate vertical upliftment in the F layer altitude and reduction in the ionospheric peak frequency were also observed when the dark band pass through the ionosonde location. All these results confirmed that the observed depletions are indeed associated with ionospheric F region plasma irregularities. The rate of total electron content index (ROTI) indicates the absence of plasma bubble activities over the equatorial/low latitude region which confirms that the observed event is a mid-latitude plasma depletion. Our calculations reveal that the growth time of the plasma depletion is ∼2 h if one considers only the Perkins instability mechanism. This is not consistent with the present observations as the plasma depletion developed within ∼25 min. By invoking possible Es layer instabilities and associated E-F region coupling, we show that the growth rate increases roughly by an order of magnitude. This strongly suggests that the Cosgrove and Tsunoda mechanism may be simultaneously operational in this case. Furthermore, it is also suggested that reduced F region flux-tube integrated conductivity in the southern part of onset region created conducive background conditions for the growth of the plasma depletion on this night.
  • Item
    Multi‐Point Measurements of the Plasma Properties Inside an Aurora From the SPIDER Sounding Rocket
    (Hoboken, NJ : Wiley, 2021) Giono, Gabriel; Ivchenko, Nickolay; Sergienko, Tima; Brändström, Urban
    The Small Payloads for Investigation of Disturbances in Electrojet by Rockets (SPIDER) sounding rocket was launched on February 2nd, 2016 (21:09 UT), deploying 10 free falling units (FFUs) inside a westward traveling auroral surge. Each FFUs deployed spherical electric field and Langmuir probes on wire-booms, providing in situ multi-point recordings of the electric field and plasma properties. The analytical retrieval of the plasma parameters, namely the electron density, electron temperature and plasma potential, from the Langmuir probe measurements was non-trivial due to sheath effects and detailed explanation are discussed in this article. An empirical assumption on the sheath thickness was required, which was confirmed by simulating the plasma environment around the FFU using the Spacecraft Plasma Interaction Software (SPIS). In addition, the retrieved electron density and temperature are also in agreement with the simultaneous incoherent scatter radar measurements from the EISCAT facility. These two independent confirmations provided a good level of confidence in the plasma parameters obtained from the FFUs, and events observed during the flight are discussed in more details. Hints of drift-wave instabilities and increased currents inside a region of enhanced density were observed by the FFUs.