Search Results

Now showing 1 - 3 of 3
  • Item
    Bulk single crystals and physical properties of β-(AlxGa1-x)2O3(x = 0-0.35) grown by the Czochralski method
    (Melville, NY : American Inst. of Physics, 2023) Galazka, Zbigniew; Fiedler, Andreas; Popp, Andreas; Ganschow, Steffen; Kwasniewski, Albert; Seyidov, Palvan; Pietsch, Mike; Dittmar, Andrea; Anooz, Saud Bin; Irmscher, Klaus; Suendermann, Manuela; Klimm, Detlef; Chou, Ta-Shun; Rehm, Jana; Schroeder, Thomas; Bickermann, Matthias
    We have systematically studied the growth, by the Czochralski method, and basic physical properties of a 2 cm and 2 in. diameter bulk β-(AlxGa1-x)2O3 single crystal with [Al] = 0-35 mol. % in the melt in 5 mol. % steps. The segregation coefficient of Al in the Ga2O3 melt of 1.1-1.2 results in a higher Al content in the crystals than in the melt. The crystals were also co-doped with Si or Mg. [Al] = 30 mol. % in the melt (33-36 mol. % in the crystals) seems to be a limit for obtaining bulk single crystals of high structural quality suitable for homoepitaxy. The crystals were either semiconducting (no intentional co-dopants with [Al] = 0-30 mol. % and Si-doped with [Al] = 15-20 mol. %), degenerately semiconducting (Si-doped with [Al] ≤ 15 mol. %), or semi-insulating ([Al] ≥ 25 mol. % and/or Mg-doped). The full width at half maximum of the rocking curve was 30-50 arcsec. The crystals showed a linear but anisotropic decrease in all lattice constants and a linear increase in the optical bandgap (5.6 eV for [Al] = 30 mol. %). The room temperature electron mobility at similar free electron concentrations gradually decreases with [Al], presumably due to enhanced scattering at phonons as the result of a larger lattice distortion. In Si co-doped crystals, the scattering is enhanced by ionized impurities. Measured electron mobilities and bandgaps enabled to estimate the Baliga figure of merit for electronic devices.
  • Item
    Suppression of particle formation by gas-phase pre-reactions in (100) MOVPE-grown β -Ga2O3films for vertical device application
    (Melville, NY : American Inst. of Physics, 2023) Chou, Ta-Shun; Seyidov, Palvan; Bin Anooz, Saud; Grüneberg, Raimund; Pietsch, Mike; Rehm, Jana; Tran, Thi Thuy Vi; Tetzner, Kornelius; Galazka, Zbigniew; Albrecht, Martin; Irmscher, Klaus; Fiedler, Andreas; Popp, Andreas
    This work investigated the metalorganic vapor-phase epitaxy (MOVPE) of (100) β-Ga2O3 films with the aim of meeting the requirements to act as drift layers for high-power electronic devices. A height-adjustable showerhead achieving a close distance to the susceptor (1.5 cm) was demonstrated to be a critical factor in increasing the stability of the Ga wetting layer (or Ga adlayer) on the surface and reducing parasitic particles. A film thickness of up to 3 μm has been achieved while keeping the root mean square below 0.7 nm. Record carrier mobilities of 155 cm2 V-1 s-1 (2.2 μm) and 163 cm2 V-1 s-1 (3 μm) at room temperature were measured for (100) β-Ga2O3 films with carrier concentrations of 5.7 × 1016 and 7.1 × 1016 cm-3, respectively. Analysis of temperature-dependent Hall mobility and carrier concentration data revealed a low background compensating acceptor concentration of 4 × 1015 cm-3.
  • Item
    Huge impact of compressive strain on phase transition temperatures in epitaxial ferroelectric KxNa1-xNbO3 thin films
    (Melville, NY : American Inst. of Physics, 2019) Von Helden, L.; Bogula, L.; Janolin, P.-E.; Hanke, M.; Breuer, T.; Schmidbauer, M.; Ganschow, S.; Schwarzkopf, J.
    We present a study in which ferroelectric phase transition temperatures in epitaxial KxNa1-xNbO3 films are altered systematically by choosing different (110)-oriented rare-earth scandate substrates and by variation of the potassium to sodium ratio. Our results prove the capability to continuously shift the ferroelectric-to-ferroelectric transition from the monoclinic MC to orthorhombic c-phase by about 400 °C via the application of anisotropic compressive strain. The phase transition was investigated in detail by monitoring the temperature dependence of ferroelectric domain patterns using piezoresponse force microscopy and upon analyzing structural changes by means of high resolution X-ray diffraction including X-ray reciprocal space mapping. Moreover, the temperature evolution of the effective piezoelectric coefficient d33,f was determined using double beam laser interferometry, which exhibits a significant dependence on the particular ferroelectric phase. © 2019 Author(s).