Search Results

Now showing 1 - 10 of 47
  • Item
    Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates
    (Melville, NY : American Inst. of Physics, 2023) Knauer, A.; Kolbe, T.; Hagedorn, S.; Hoepfner, J.; Guttmann, M.; Cho, H.K.; Rass, J.; Ruschel, J.; Einfeldt, S.; Kneissl, M.; Weyers, M.
    High temperature annealed AlN/sapphire templates exhibit a reduced in-plane lattice constant compared to conventional non-annealed AlN/sapphire grown by metalorganic vapor phase epitaxy (MOVPE). This leads to additional lattice mismatch between the template and the AlGaN-based ultraviolet-C light emitting diode (UVC LED) heterostructure grown on these templates. This mismatch introduces additional compressive strain in AlGaN quantum wells resulting in enhanced transverse electric polarization of the quantum well emission at wavelengths below 235 nm compared to layer structures deposited on conventional MOVPE-grown AlN templates, which exhibit mainly transverse magnetic polarized emission. In addition, high temperature annealed AlN/sapphire templates also feature reduced defect densities leading to reduced non-radiative recombination. Based on these two factors, i.e., better outcoupling efficiency of the transverse electric polarized light and an enhanced internal quantum efficiency, the performance characteristic of far-UVC LEDs emitting at 231 nm was further improved with a cw optical output power of 3.5 mW at 150 mA.
  • Item
    A 310 nm Optically Pumped AlGaN Vertical-Cavity Surface-Emitting Laser
    (Washington, DC : ACS Publications, 2021) Hjort, Filip; Enslin, Johannes; Cobet, Munise; Bergmann, Michael A.; Gustavsson, Johan; Kolbe, Tim; Knauer, Arne; Nippert, Felix; Häusler, Ines; Wagner, Markus R.; Wernicke, Tim; Kneissl, Michael; Haglund, Åsa
    Ultraviolet light is essential for disinfection, fluorescence excitation, curing, and medical treatment. An ultraviolet light source with the small footprint and excellent optical characteristics of vertical-cavity surface-emitting lasers (VCSELs) may enable new applications in all these areas. Until now, there have only been a few demonstrations of ultraviolet-emitting VCSELs, mainly optically pumped, and all with low Al-content AlGaN cavities and emission near the bandgap of GaN (360 nm). Here, we demonstrate an optically pumped VCSEL emitting in the UVB spectrum (280-320 nm) at room temperature, having an Al0.60Ga0.40N cavity between two dielectric distributed Bragg reflectors. The double dielectric distributed Bragg reflector design was realized by substrate removal using electrochemical etching. Our method is further extendable to even shorter wavelengths, which would establish a technology that enables VCSEL emission from UVA (320-400 nm) to UVC (<280 nm). © 2020 American Chemical Society. All rights reserved.
  • Item
    Low resistance n-contact for UVC LEDs by a two-step plasma etching process
    (Bristol : IOP Publ., 2020) Cho, H.K.; Kang, J.H.; Sulmoni, L.; Kunkel, K.; Rass, J.; Susilo, N.; Wernicke, T.; Einfeldt, S.; Kneissl, M.
    The impact of plasma etching on the formation of low-resistance n-contacts on the AlGaN:Si current spreading layer during the chip fabrication of ultraviolet light-emitting diodes (UV LEDs) emitting at 265 nm is investigated. A two-step plasma etching process with a first rapid etching using BCl3/Cl2 gas mixture and a second slow etching step using pure Cl2 gas has been developed. The etching sequence provides smooth mesa side-walls and an n-AlGaN surface with reduced surface damage. Ohmic n-contacts with a contact resistivity of 3.5 10-4 Ωcm2 are obtained on Si-doped Al0.65Ga0.35N layers and the operating voltages of the UVC LEDs were reduced by 2 V for a current of 20 mA. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    High-brightness broad-area diode lasers with enhanced self-aligned lateral structure
    (Bristol : IOP Publ., 2020) Elatta, M.; Brox, O.; Della Casa, P.; Maaßdorf, A.; Martin, D.; Wenzel, H.; Knigge, A.; Crump, P.
    Broad-area diode lasers with increased brightness and efficiency are presented, which are fabricated using an enhanced self-aligned lateral structure by means of a two-step epitaxial growth process with an intermediate etching step. In this structure, current-blocking layers in the device edges ensure current confinement under the central stripe, which can limit the detrimental effects of current spreading and lateral carrier accumulation on beam quality. It also minimizes losses at stripe edges, thus lowering the lasing threshold and increasing conversion efficiency, while maintaining high polarization purity. In the first realization of this structure, the current block is integrated within an extreme-triple-asymmetric epitaxial design with a thin p-doped side, meaning that the distance between the current block and the active zone can be minimized without added process complexity. Using this configuration, enhanced self-aligned structure devices with 90 µm stripe width and 4 mm resonator length show up to 20% lower threshold current, 21% narrower beam waist, and slightly higher (1.03 ) peak efficiency in comparison to reference devices with the same dimensions, while slope, divergence angle and polarization purity remain almost unchanged. These results correspond to an increase in brightness by up to 25%, and measurement results of devices with varying stripe widths follow the same trend. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Impact of the capture time on the series resistance of quantum-well diode lasers
    (Bristol : IOP Publ., 2020) Boni, A.; Wünsche, H.J.; Wenzel, H.; Crump, P.
    Electrons and holes injected into a semiconductor heterostructure containing quantum wells are captured with a finite time. We show theoretically that this very fact can cause a considerable excess contribution to the series resistivity and this is one of the main limiting factors to higher efficiency for GaAs based high-power lasers. The theory combines a standard microscopic-based model for the capture-escape processes in the quantum well with a drift-diffusion description of current flow outside the quantum well. Simulations of five GaAs-based devices differing in their Al-content reveal the root-cause of the unexpected and until now unexplained increase of the series resistance with decreasing heat sink temperature measured recently. The finite capture time results in resistances in excess of the bulk layer resistances (decreasing with increasing temperature) from 1 mΩ up to 30 mΩ in good agreement with the experiment. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Low-index quantum-barrier single-pass tapered semiconductor optical amplifiers for efficient coherent beam combining
    (Bristol : IOP Publ., 2020) Albrodt, P.; Niemeyer, M.; Elattar, M.; Hamperl, J.; Blume, G.; Ginolas, A.; Fricke, J.; Maaßdorf, A.; Georges, P.; Lucas-Leclin, G.; Paschke, K.; Crump, P.
    The requirements for coherent combination of high power GaAs-based single-pass tapered amplifiers are studied. Changes to the epitaxial layer structure are shown to bring higher beam quality and hence improved combining efficiency for one fixed device geometry. Specifically, structures with large vertical near field and low wave-guiding from the active region show 10% higher beam quality and coherent combining efficiency than reference devices. As a result, coherent combining efficiency is shown to be limited by beam quality, being directly proportional to the power content in the central lobe across a wide range of devices with different construction. In contrast, changes to the in-plane structure did not improve beam quality or combining efficiency. Although poor beam quality does correlate with increased optical intensities near the input aperture, locating monolithically-integrated absorption regions in these areas did not lead to any performance improvement. However, large area devices with subsequently improved cooling do achieve higher output powers. Phase noise can limit coherent combining, but this is shown to be small and independent of device design. Overall, tapered amplifiers are well suited for high power coherent combining applications. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Optimized diamond inverted nanocones for enhanced color center to fiber coupling
    (Melville, NY : American Inst. of Physics, 2021) Torun, Cem Güney; Schneider, Philipp-Immanuel; Hammerschmidt, Martin; Burger, Sven; Munns, Joseph H. D.; Schröder, Tim
    Nanostructures can be used for boosting the light outcoupling of color centers in diamond; however, the fiber coupling performance of these nanostructures is rarely investigated. Here, we use a finite element method for computing the emission from color centers in inverted nanocones and the overlap of this emission with the propagation mode in a single-mode fiber. Using different figures of merit, the inverted nanocone parameters are optimized to obtain maximal fiber coupling efficiency, free-space collection efficiency, or rate enhancement. The optimized inverted nanocone designs show promising results with 66% fiber coupling or 83% free-space coupling efficiency at the tin-vacancy center zero-phonon line wavelength of 619 nm. Moreover, when evaluated for broadband performance, the optimized designs show 55% and 76% for fiber coupling and free-space efficiencies, respectively, for collecting the full tin-vacancy emission spectrum at room temperature. An analysis of fabrication insensitivity indicates that these nanostructures are robust against imperfections. For maximum emission rate into a fiber mode, a design with a Purcell factor of 2.34 is identified. Finally, possible improvements offered by a hybrid inverted nanocone, formed by patterning into two different materials, are investigated and increase the achievable fiber coupling efficiency to 71%. © 2021 Author(s).
  • Item
    Advances in electron channelling contrast imaging and electron backscatter diffraction for imaging and analysis of structural defects in the scanning electron microscope
    (London [u.a.] : Institute of Physics, 2020) Trager-Cowan, C.; Alasmari, A.; Avis, W.; Bruckbauer, J.; Edwards, P.R.; Hourahine, B.; Kraeusel, S.; Kusch, G.; Jablon, B.M.; Johnston, R.; Martin, R.W.; Mcdermott, R.; Naresh-Kumar, G.; Nouf-Allehiani, M.; Pascal, E.; Thomson, D.; Vespucci, S.; Mingard, K.; Parbrook, P.J.; Smith, M.D.; Enslin, J.; Mehnke, F.; Kneissl, M.; Kuhn, C.; Wernicke, T.; Knauer, A.; Hagedorn, S.; Walde, S.; Weyers, M.; Coulon, P.-M.; Shields, P.A.; Zhang, Y.; Jiu, L.; Gong, Y.; Smith, R.M.; Wang, T.; Winkelmann, A.
    In this article we describe the scanning electron microscopy (SEM) techniques of electron channelling contrast imaging and electron backscatter diffraction. These techniques provide information on crystal structure, crystal misorientation, grain boundaries, strain and structural defects on length scales from tens of nanometres to tens of micrometres. Here we report on the imaging and analysis of dislocations and sub-grains in nitride semiconductor thin films (GaN and AlN) and tungsten carbide-cobalt (WC-Co) hard metals. Our aim is to illustrate the capability of these techniques for investigating structural defects in the SEM and the benefits of combining these diffraction-based imaging techniques.
  • Item
    Extensive study of magneto-optical and optical properties of Cd1−xMnxTe between 675 and 1025 nm
    (New York, NY : American Inst. of Physics, 2023) Tyborski, Christoph; Hassan, Muhammad T.; Flisgen, Thomas; Schiemangk, Max; Wicht, Andreas
    We determine Faraday rotations and measure the optical reflection and transmission from magneto-optical Cd1−xMnxTe crystals with various stoichiometric ratios. For wavelengths between 675 and 1025 nm, we derive Verdet constants, optical loss coefficients, and the complex indices of reflection that are relevant measures to find suitable stoichiometric ratios of Cd1−xMnxTe for the realization of miniaturized optical isolators. By reflection and transmission measurements, we determine the stoichiometric ratios of several different Cd1−xMnxTe crystals and discuss the observed dependence of the optical properties on the stoichiometric ratio with respect to their use in optical isolators. Finally, we show the relevant figure of merit, i.e., the ratio of Verdet constants and optical loss coefficients for Cd1−xMnxTe crystals with Mn contents ranging from x = 0.14 to x = 0.50.
  • Item
    High-temperature annealing of AlN films grown on 4H-SiC
    (New York, NY : American Inst. of Physics, 2020) Brunner, F.; Cancellara, L.; Hagedorn, S.; Albrecht, M.; Weyers, M.
    The effect of high-temperature annealing (HTA) at 1700 °C on AlN films grown on 4H-SiC substrates by metalorganic vapor phase epitaxy has been studied. It is shown that the structural quality of the AlN layers improves significantly after HTA similar to what has been demonstrated for AlN grown on sapphire. Dislocation densities reduce by one order of magnitude resulting in 8 × 108 cm-2 for a-type and 1 × 108 cm-2 for c-type dislocations. The high-temperature treatment removes pits from the surface by dissolving nanotubes and dislocations in the material. XRD measurements prove that the residual strain in AlN/4H-SiC is further relaxed after annealing. AlN films grown at higher temperature resulting in a lower as-grown defect density show only a marginal reduction in dislocation density after annealing. Secondary ion mass spectrometry investigation of impurity concentrations reveals an increase of Si after HTA probably due to in-diffusion from the SiC substrate. However, C concentration reduces considerably with HTA that points to an efficient carbon removal process (i.e., CO formation). © 2020 Author(s).