Search Results

Now showing 1 - 10 of 72
Loading...
Thumbnail Image
Item

Multiscale Spatiotemporal Analysis of Extreme Events in the Gomati River Basin, India

2021, Kalyan, AVS, Ghose, Dillip Kumar, Thalagapu, Rahul, Guntu, Ravi Kumar, Agarwal, Ankit, Kurths, Jürgen, Rathinasamy, Maheswaran

Accelerating climate change is causing considerable changes in extreme events, leading to immense socioeconomic loss of life and property. In this study, we investigate the characteristics of extreme climate events at a regional scale to ‐understand these events’ propagation in the near fu-ture. We have considered sixteen extreme climate indices defined by the World Meteorological Or-ganization’s Expert Team on Climate Change Detection and Indices from a long‐term dataset (1951– 2018) of 53 locations in Gomati River Basin, North India. We computed the present and future spatial variation of theses indices using the Sen’s slope estimator and Hurst exponent analysis. The periodicities and non‐stationary features were estimated using the continuous wavelet transform. Bivariate copulas were fitted to estimate the joint probabilities and return periods for certain com-binations of indices. The study results show different variation in the patterns of the extreme climate indices: D95P, R95TOT, RX5D, and RX showed negative trends for all stations over the basin. The number of dry days (DD) showed positive trends over the basin at 36 stations out of those 17 stations are statistically significant. A sustainable decreasing trend is observed for D95P at all stations, indi-cating a reduction in precipitation in the future. DD exhibits a sustainable decreasing trend at almost all the stations over the basin barring a few exceptions highlight that the basin is turning drier. The wavelet power spectrum for D95P showed significant power distributed across the 2–16‐year bands, and the two‐year period was dominant in the global power spectrum around 1970–1990. One interest-ing finding is that a dominant two‐year period in D95P has changed to the four years after 1984 and remains in the past two decades. The joint return period’s resulting values are more significant than values resulting from univariate analysis (R95TOT with 44% and RTWD of 1450 mm). The difference in values highlights that ignoring the mutual dependence can lead to an underestimation of extremes. © 2021 by the author. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Performance of seasonal forecasts for the flowering and veraison of two major Portuguese grapevine varieties

2023, Yang, Chenyao, Ceglar, Andrej, Menz, Christoph, Martins, Joana, Fraga, Helder, Santos, João A.

Seasonal phenology forecasts are becoming increasingly demanded by winegrowers and viticulturists. Forecast performance needs to be investigated over space and time before practical applications. We assess seasonal forecast performance (skill, probability and accuracy) in predicting flowering and veraison stages of two representative varieties in Portugal over 1993–2017. The state-of-the-art forecast system ECMWF-SEAS5 provides 7-month seasonal forecasts and is coupled with a locally adapted phenology model. Overall, findings illustrate the dependence of forecast performance on initialization timings, regions and predicting subjects (stages and varieties). Forecast performance improves by delaying the initialization timing and only forecasts initialized on April 1st show better skills than climatology on predicting phenology terciles (early/normal/late). The considerable bias of daily values of seasonal climate predictions can represent the main barrier to accurate forecasts. Better prediction performance is consistently found in Central-Southern regions compared to Northern regions, attributing to an earlier phenology occurrence with a shorter forecast length. Comparable predictive skills between flowering and veraison for both varieties imply better predictability in summer. Consequently, promising seasonal phenology predictions are foreseen in Central-Southern wine regions using forecasts initialized on April 1st with approximately 1–2/3–4 months lead time for flowering/veraison: potential prediction errors are ∼2 weeks, along with an overall moderate forecast skill on categorical events. However, considerable inter-annual variability of forecast performance over the same classified phenology years reflects the substantial influence of climate variability. This may represent the main challenge for reliable forecasts in Mediterranean regions. Recommendations are suggested for methodological innovations and practical applications towards reliable regional phenology forecasts.

Loading...
Thumbnail Image
Item

Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations

2022, Riechers, Keno, Mitsui, Takahito, Boers, Niklas, Ghil, Michael

The relative role of external forcing and of intrinsic variability is a key question of climate variability in general and of our planet's paleoclimatic past in particular. Over the last 100 years since Milankovic's contributions, the importance of orbital forcing has been established for the period covering the last 2.6gMyr and the Quaternary glaciation cycles that took place during that time. A convincing case has also been made for the role of several internal mechanisms that are active on timescales both shorter and longer than the orbital ones. Such mechanisms clearly have a causal role in Dansgaard-Oeschger and Heinrich events, as well as in the mid-Pleistocene transition. We introduce herein a unified framework for the understanding of the orbital forcing's effects on the climate system's internal variability on timescales from thousands to millions of years. This framework relies on the fairly recent theory of non-autonomous and random dynamical systems, and it has so far been successfully applied in the climate sciences for problems like the El Niño-Southern Oscillation, the oceans' wind-driven circulation, and other problems on interannual to interdecadal timescales. Finally, we provide further examples of climate applications and present preliminary results of interest for the Quaternary glaciation cycles in general and the mid-Pleistocene transition in particular.

Loading...
Thumbnail Image
Item

Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks

2022, Zeitz, Maria, Haacker, Jan M., Donges, Jonathan F., Albrecht, Torsten, Winkelmann, Ricarda

The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50000years, and the ice volume stabilizes at 61-93 of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74000 and over 300000 years and oscillation amplitudes between 15-70 of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100000years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future"and, thus, long-term resilience of the Greenland Ice Sheet.

Loading...
Thumbnail Image
Item

Management-induced changes in soil organic carbon on global croplands

2022, Karstens, Kristine, Bodirsky, Benjamin Leon, Dietrich, Jan Philipp, Dondini, Marta, Heinke, Jens, Kuhnert, Matthias, Müller, Christoph, Rolinski, Susanne, Smith, Pete, Weindl, Isabelle, Lotze-Campen, Hermann, Popp, Alexander

Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975-2010, this SOC debt continued to expand by 5 GtC (0.14 GtCyr-1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtCyr-1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement - also within computationally demanding integrated (land use) assessment modeling.

Loading...
Thumbnail Image
Item

Interacting tipping elements increase risk of climate domino effects under global warming

2021, Wunderling, Nico, Donges, Jonathan F., Kurths, Jürgen, Winkelmann, Ricarda

With progressing global warming, there is an increased risk that one or several tipping elements in the climate system might cross a critical threshold, resulting in severe consequences for the global climate, ecosystems and human societies. While the underlying processes are fairly well-understood, it is unclear how their interactions might impact the overall stability of the Earth's climate system. As of yet, this cannot be fully analysed with state-of-the-art Earth system models due to computational constraints as well as some missing and uncertain process representations of certain tipping elements. Here, we explicitly study the effects of known physical interactions among the Greenland and West Antarctic ice sheets, the Atlantic Meridional Overturning Circulation (AMOC) and the Amazon rainforest using a conceptual network approach. We analyse the risk of domino effects being triggered by each of the individual tipping elements under global warming in equilibrium experiments. In these experiments, we propagate the uncertainties in critical temperature thresholds, interaction strengths and interaction structure via large ensembles of simulations in a Monte Carlo approach. Overall, we find that the interactions tend to destabilise the network of tipping elements. Furthermore, our analysis reveals the qualitative role of each of the four tipping elements within the network, showing that the polar ice sheets on Greenland and West Antarctica are oftentimes the initiators of tipping cascades, while the AMOC acts as a mediator transmitting cascades. This indicates that the ice sheets, which are already at risk of transgressing their temperature thresholds within the Paris range of 1.5 to 2 ∘C, are of particular importance for the stability of the climate system as a whole.

Loading...
Thumbnail Image
Item

Insolation evolution and ice volume legacies determine interglacial and glacial intensity

2022, Mitsui, Takahito, Tzedakis, Polychronis C., Wolff, Eric W.

Interglacials and glacials represent low and high ice volume end-members of ice age cycles. While progress has been made in our understanding of how and when transitions between these states occur, their relative intensity has been lacking an explanatory framework. With a simple quantitative model, we show that over the last 800 000 years interglacial intensity can be described as a function of the strength of the previous glacial and the summer insolation at high latitudes in both hemispheres during the deglaciation. Since the precession components in the boreal and austral insolations counteract each other, the amplitude increase in obliquity cycles after 430 000 years ago is imprinted in interglacial intensities, contributing to the manifestation of the so-called Mid-Brunhes Event. Glacial intensity is also linked to the strength of the previous interglacial, the time elapsed from it, and the evolution of boreal summer insolation. Our results suggest that the memory of previous climate states and the time course of the insolation are crucial for understanding interglacial and glacial intensities.

Loading...
Thumbnail Image
Item

Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests

2021, Sakschewski, Boris, Bloh, Werner von, Drüke, Markus, Sörensson, Anna Amelia, Ruscica, Romina, Langerwisch, Fanny, Billing, Maik, Bereswill, Sarah, Hirota, Marina, Oliveira, Rafael Silva, Heinke, Jens, Thonicke, Kirsten

A variety of modelling studies have suggested tree rooting depth as a key variable to explain evapotranspiration rates, productivity and the geographical distribution of evergreen forests in tropical South America. However, none of those studies have acknowledged resource investment, timing and physical constraints of tree rooting depth within a competitive environment, undermining the ecological realism of their results. Here, we present an approach of implementing variable rooting strategies and dynamic root growth into the LPJmL4.0 (Lund-Potsdam-Jena managed Land) dynamic global vegetation model (DGVM) and apply it to tropical and sub-tropical South America under contemporary climate conditions. We show how competing rooting strategies which underlie the trade-off between above- and below-ground carbon investment lead to more realistic simulation of intra-annual productivity and evapotranspiration and consequently of forest cover and spatial biomass distribution. We find that climate and soil depth determine a spatially heterogeneous pattern of mean rooting depth and below-ground biomass across the study region. Our findings support the hypothesis that the ability of evergreen trees to adjust their rooting systems to seasonally dry climates is crucial to explaining the current dominance, productivity and evapotranspiration of evergreen forests in tropical South America.

Loading...
Thumbnail Image
Item

Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models

2021, Katzenberger, Anja, Schewe, Jacob, Pongratz, Julia, Levermann, Anders

The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP6 are of interest. Here, we analyze 32 models of the latest CMIP6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with a high agreement between the models independent of the SSP if global warming is the dominant forcing of the monsoon dynamics as it is in the 21st century; the multi-model mean for JJAS projects an increase of 0.33 mm d−1 and 5.3 % per kelvin of global warming. This is significantly higher than in the CMIP5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP6 simulations largely confirm the findings from CMIP5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.

Loading...
Thumbnail Image
Item

Complex network approach for detecting tropical cyclones

2021, Gupta, Shraddha, Boers, Niklas, Pappenberger, Florian, Kurths, Jürgen

Tropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth’s surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Niño Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of the network topology over time scales relevant to TCs allows us to obtain crucial insights into the effects of TCs on the spatial connectivity structure of sea-level pressure fields.