Search Results

Now showing 1 - 10 of 449
Loading...
Thumbnail Image
Item

Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound

2023, Sannes, Johnny A., Kizhake Malayil, Ranjith K., Corredor, Laura T., Wolter, Anja U. B., Grafe, Hans-Joachim, Valldor, Martin

The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.

Loading...
Thumbnail Image
Item

Persistent peri-Heptacene: Synthesis and In Situ Characterization

2021, Ajayakumar, M.R., Ma, Ji, Lucotti, Andrea, Schellhammer, Karl Sebastian, Serra, Gianluca, Dmitrieva, Evgenia, Rosenkranz, Marco, Komber, Hartmut, Liu, Junzhi, Ortmann, Frank, Tommasini, Matteo, Feng, Xinliang

n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst

2021, Gao, Jie, Ma, Rui, Feng, Lu, Liu, Yuefeng, Jackstell, Ralf, Jagadeesh, Rajenahally V., Beller, Matthias

A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines

2021, Schymanski, Darena, Oßmann, Barbara E., Benismail, Nizar, Boukerma, Kada, Dallmann, Gerald, von der Esch, Elisabeth, Fischer, Dieter, Fischer, Franziska, Gilliland, Douglas, Glas, Karl, Hofmann, Thomas, Käppler, Andrea, Lacorte, Sílvia, Marco, Julie, Rakwe, Maria El, Weisser, Jana, Witzig, Cordula, Zumbülte, Nicole, Ivleva, Natalia P.

Microplastics are a widespread contaminant found not only in various natural habitats but also in drinking waters. With spectroscopic methods, the polymer type, number, size, and size distribution as well as the shape of microplastic particles in waters can be determined, which is of great relevance to toxicological studies. Methods used in studies so far show a huge diversity regarding experimental setups and often a lack of certain quality assurance aspects. To overcome these problems, this critical review and consensus paper of 12 European analytical laboratories and institutions, dealing with microplastic particle identification and quantification with spectroscopic methods, gives guidance toward harmonized microplastic particle analysis in clean waters. The aims of this paper are to (i) improve the reliability of microplastic analysis, (ii) facilitate and improve the planning of sample preparation and microplastic detection, and (iii) provide a better understanding regarding the evaluation of already existing studies. With these aims, we hope to make an important step toward harmonization of microplastic particle analysis in clean water samples and, thus, allow the comparability of results obtained in different studies by using similar or harmonized methods. Clean water samples, for the purpose of this paper, are considered to comprise all water samples with low matrix content, in particular drinking, tap, and bottled water, but also other water types such as clean freshwater.

Loading...
Thumbnail Image
Item

Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork

2022, Włodarczyk-Biegun, Małgorzata K., Villiou, Maria, Koch, Marcus, Muth, Christina, Wang, Peixi, Ott, Jenna, del Campo, Aranzazu

The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.

Loading...
Thumbnail Image
Item

A General and Highly Selective Palladium-Catalyzed Hydroamidation of 1,3-Diynes

2021, Liu, Jiawang, Schneider, Carolin, Yang, Ji, Wei, Zhihong, Jiao, Haijun, Franke, Robert, Jackstell, Ralf, Beller, Matthias

A chemo-, regio-, and stereoselective mono-hydroamidation of (un)symmetrical 1,3-diynes is described. Key for the success of this novel transformation is the utilization of an advanced palladium catalyst system with the specific ligand Neolephos. The synthetic value of this general approach to synthetically useful α-alkynyl-α, β-unsaturated amides is showcased by diversification of several structurally complex molecules and marketed drugs. Control experiments and density-functional theory (M06L-SMD) computations also suggest the crucial role of the substrate in controlling the regioselectivity of unsymmetrical 1,3-diynes. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound

2021, Zhou, Yu, Huo, Shuaidong, Loznik, Mark, Göstl, Robert, Boersma, Arnold J., Herrmann, Andreas

Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device

2023, Corley-Wiciak, Cedric, Richter, Carsten, Zoellner, Marvin H., Zaitsev, Ignatii, Manganelli, Costanza L., Zatterin, Edoardo, Schülli, Tobias U., Corley-Wiciak, Agnieszka A., Katzer, Jens, Reichmann, Felix, Klesse, Wolfgang M., Hendrickx, Nico W., Sammak, Amir, Veldhorst, Menno, Scappucci, Giordano, Virgilio, Michele, Capellini, Giovanni

A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.

Loading...
Thumbnail Image
Item

A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer

2021, Liu, Kejun, Li, Jiang, Qi, Haoyuan, Hambsch, Mike, Rawle, Jonathan, Vázquez, Adrián Romaní, Nia, Ali Shaygan, Pashkin, Alexej, Schneider, Harald, Polozij, Mirosllav, Heine, Thomas, Helm, Manfred, Mannsfeld, Stefan C.B., Kaiser, Ute, Dong, Renhao, Feng, Xinliang

Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic–inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation–π interaction between 2DP and graphene. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications

2021, Steiner, Anja Maria, Lissel, Franziska, Fery, Andreas, Lauth, Jannika, Scheele, Marcus

We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface. © 2020 The Authors. Published by Wiley-VCH GmbH