Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Semantic segmentation of non-linear multimodal images for disease grading of inflammatory bowel disease: A segnet-based application

2019, Pradhan, Pranita, Meyer, Tobias, Vieth, Michael, Stallmach, Andreas, Waldner, Maximilian, Schmitt, Michael, Popp, Juergen, Bocklitz, Thomas, De Marsico, Maria, Sanniti di Baja, Gabriella, Fred, Ana

Non-linear multimodal imaging, the combination of coherent anti-stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), has shown its potential to assist the diagnosis of different inflammatory bowel diseases (IBDs). This label-free imaging technique can support the ‘gold-standard’ techniques such as colonoscopy and histopathology to ensure an IBD diagnosis in clinical environment. Moreover, non-linear multimodal imaging can measure biomolecular changes in different tissue regions such as crypt and mucosa region, which serve as a predictive marker for IBD severity. To achieve a real-time assessment of IBD severity, an automatic segmentation of the crypt and mucosa regions is needed. In this paper, we semantically segment the crypt and mucosa region using a deep neural network. We utilized the SegNet architecture (Badrinarayanan et al., 2015) and compared its results with a classical machine learning approach. Our trained SegNet mod el achieved an overall F1 score of 0.75. This model outperformed the classical machine learning approach for the segmentation of the crypt and mucosa region in our study.

Loading...
Thumbnail Image
Item

A Computational Pipeline for Sepsis Patients’ Stratification and Diagnosis

2018, Campos, David, Pinho, Renato, Neugebauer, Ute, Popp, Juergen, Oliveira, José Luis, Zwiggelaar, Reyer, Gamboa, Hugo, Fred, Ana, Bermúdez i Badia, Sergi

Sepsis is still a little acknowledged public health issue, despite its increasing incidence and the growing mortality rate. In addition, a clear diagnosis can be lengthy and complicated, due to highly variable symptoms and non-specific criteria, causing the disease to be diagnosed and treated too late. This paper presents the HemoSpec platform, a decision support system which, by collecting and automatically processing data from several acquisition devices, can help in the early diagnosis of sepsis.

Loading...
Thumbnail Image
Item

Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing

2022, Wang, Yu-Hao, Gong, Tian-Cheng, Ding, Ya-Xin, Li, Yang, Wang, Wei, Chen, Zi-Ang, Du, Nan, Covi, Erika, Farronato, Matteo, Ielmini, Daniele, Zhang, Xu-Meng, Luo, Qing

The spiking neural network (SNN), closely inspired by the human brain, is one of the most powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system. In the hardware implementation, the building of artificial spiking neurons is fundamental for constructing the whole system. However, with the slowing down of Moore’s Law, the traditional complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is reviewed. Moreover, we review the implementation of TS memristor-based neurons and their systems, and point out the challenges that should be further considered from devices to circuits in the system demonstrations. We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors.

Loading...
Thumbnail Image
Item

Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains Using the U-Net Network and One-Class Classification

2020, Ali, Nairveen, Kirchhoff, Johanna, Onoja, Patrick Igoche, Tannert, Astrid, Neugebauer, Ute, Popp, Jürgen, Bocklitz, Thomas

The antibiotic resistance of bacterial pathogens has become one of the most serious global health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages and limitations in clinical applications. In this contribution, we aim to assess and automate the detection of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using a combination of image processing and machine learning algorithms. Therein, microscopic images were collected from different E. coli strains, then the convolutional neural network U-Net was implemented to segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively. The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not fully detected by the proposed method.