Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients

2021, Osei, Eric Boateng, Paniushkina, Liliia, Wilhelm, Konrad, Popp, Jürgen, Nazarenko, Irina, Krafft, Christoph

Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.

Loading...
Thumbnail Image
Item

Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique

2020, Korinth, Florian, Schmälzlin, Elmar, Stiebing, Clara, Urrutia, Tanya, Micheva, Genoveva, Sandin, Christer, Müller, André, Maiwald, Martin, Sumpf, Bernd, Krafft, Christoph, Tränkle, Günther, Roth, Martin M, Popp, Jürgen

Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.

Loading...
Thumbnail Image
Item

A Review on Data Fusion of Multidimensional Medical and Biomedical Data

2022, Azam, Kazi Sultana Farhana, Ryabchykov, Oleg, Bocklitz, Thomas

Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods.

Loading...
Thumbnail Image
Item

Remineralization of Artificially Demineralized Human Enamel and Dentin Samples by Zinc-Carbonate Hydroxyapatite Nanocrystals

2022, Kranz, Stefan, Heyder, Markus, Mueller, Stephan, Guellmar, André, Krafft, Christoph, Nietzsche, Sandor, Tschirpke, Caroline, Herold, Volker, Sigusch, Bernd, Reise, Markus

(1) Background: Decalcified enamel and dentin surfaces can be regenerated with non-fluoride-containing biomimetic systems. This study aimed to investigate the effect of a zinc carbonate-hydroxyapatite-containing dentifrice on artificially demineralized enamel and dentin surfaces. (2) Methods: Human enamel and dentin discs were prepared and subjected to surface demineralization with 30% orthophosphoric acid for 60 s. Subsequently, in the test group (n = 20), the discs were treated three times a day for 3 min with a zinc carbonate-hydroxyapatite-containing toothpaste (biorepair®). Afterwards, all samples were gently rinsed with PBS (5 s) and stored in artificial saliva until next use. Samples from the control group (n = 20) received no dentifrice-treatment and were stored in artificial saliva, exclusively. After 15 days of daily treatment, specimens were subjected to Raman spectroscopy, energy-dispersive X-ray micro-analysis (EDX), white-light interferometry, and profilometry. (3) Results: Raman spectroscopy and white-light interferometry revealed no significant differences compared to the untreated controls. EDX analysis showed calcium phosphate and silicon dioxide precipitations on treated dentin samples. In addition, treated dentin surfaces showed significant reduced roughness values. (4) Conclusions: Treatment with biorepair® did not affect enamel surfaces as proposed. Minor mineral precipitation and a reduction in surface roughness were detected among dentin surfaces only.