Search Results

Now showing 1 - 10 of 45
  • Item
    Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber
    (Weinheim : Wiley-VCH, 2023) Zhang, Zongbao; Ji, Ran; Jia, Xiangkun; Wang, Shu‐Jen; Deconinck, Marielle; Siliavka, Elena; Vaynzof, Yana
    Metal halide perovskites are of great interest for application in semitransparent solar cells due to their tunable bandgap and high performance. However, fabricating high-efficiency perovskite semitransparent devices with high average visible transmittance (AVT) is challenging because of their high absorption coefficient. Here, a co-evaporation process is adopted to fabricate ultra-thin CsPbI3 perovskite films. The smooth surface and orientated crystal growth of the evaporated perovskite films make it possible to achieve 10 nm thin films with compact and continuous morphology without pinholes. When integrated into a p-i-n device structure of glass/ITO/PTAA/perovskite/PCBM/BCP/Al/Ag with an optimized transparent electrode, these ultra-thin layers result in an impressive open-circuit voltage (VOC) of 1.08 V and a fill factor (FF) of 80%. Consequently, a power conversion efficiency (PCE) of 3.6% with an AVT above 50% is demonstrated, which is the first report for a perovskite device of a 10 nm active layer thickness with high VOC, FF and AVT. These findings demonstrate that deposition by thermal evaporation makes it possible to form compact ultra-thin perovskite films, which are of great interest for future smart windows, light-emitting diodes, and tandem device applications.
  • Item
    NFDI4Chem - A Research Data Network for International Chemistry
    (Berlin : De Gruyter, 2023) Steinbeck, Christoph; Koepler, Oliver; Herres-Pawlis, Sonja; Bach, Felix; Jung, Nicole; Razum, Matthias; Liermann, Johannes C.; Neumann, Steffen
    Research data provide evidence for the validation of scientific hypotheses in most areas of science. Open access to them is the basis for true peer review of scientific results and publications. Hence, research data are at the heart of the scientific method as a whole. The value of openly sharing research data has by now been recognized by scientists, funders and politicians. Today, new research results are increasingly obtained by drawing on existing data. Many organisations such as the Research Data Alliance (RDA), the goFAIR initiative, and not least IUPAC are supporting and promoting the collection and curation of research data. One of the remaining challenges is to find matching data sets, to understand them and to reuse them for your own purpose. As a consequence, we urgently need better research data management.
  • Item
    A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic Heterocycles
    (Weinheim : Wiley-VCH, 2023) Bauer, Christof; Müller, Felix; Keskin, Sercan; Zobel, Mirijam; Kempe, Rhett
    Nanostructured earth abundant metal catalysts that mediate important chemical reactions with high efficiency and selectivity are of great interest. This study introduces a synthesis protocol for nanostructured earth abundant metal catalysts. Three components, an inexpensive metal precursor, an easy to synthesize N/C precursor, and a porous support material undergo pyrolysis to give the catalyst material in a simple, single synthesis step. By applying this catalyst synthesis, a highly active cobalt catalyst for the general and selective hydrogenation of aromatic heterocycles could be generated. The reaction is important with regard to organic synthesis and hydrogen storage. The mild reaction conditions observed for quinolines permit the selective hydrogenation of numerous classes of N-, O- and S-heterocyclic compounds such as: quinoxalines, pyridines, pyrroles, indoles, isoquinoline, aciridine amine, phenanthroline, benzofuranes, and benzothiophenes.
  • Item
    Raman and NMR spectroscopic and theoretical investigations of the cubic laves-phases REAl2 (RE = Sc, Y, La, Yb, Lu)
    (London : Soc., 2023) Gießelmann, Elias C. J.; Engel, Stefan; Kostusiak, Weronika; Zhang, Yuemei; Herbeck-Engel, Petra; Kickelbick, Guido; Janka, Oliver
    The cubic Laves-phase aluminides REAl2 with RE = Sc, Y, La, Yb and Lu were prepared from the elements by arc-melting or using refractory metal ampoules and induction heating. They all crystallize in the cubic crystal system with space group Fd3̄m and adopt the MgCu2 type structure. The title compounds were characterized by powder X-ray diffraction and spectroscopically investigated using Raman and 27Al and in the case of ScAl2 by 45Sc solid-state MAS NMR. In both, the Raman and NMR spectra, the aluminides exhibit only one signal due to the crystal structure. DFT calculations were used to calculate Bader charges illustrating the charge transfer in these compounds along with NMR parameters and densities of states. Finally, the bonding situation was assessed by means of ELF calculations rendering these compounds aluminides with positively charged REδ+ cations embedded in an [Al2]δ− polyanion.
  • Item
    Flux Growth and Characterization of Bulk InVO4 Crystals
    (Basel : MDPI, 2023) Voloshyna, Olesia; Gorbunov, Mikhail V.; Mikhailova, Daria; Maljuk, Andrey; Seiro, Silvia; Büchner, Bernd
    The flux growth of InVO4 bulk single crystals has been explored for the first time. The reported eutectic composition at a ratio of V2O5:InVO4 = 1:1 could not be used as a self-flux since no sign of melting was observed up to 1100 °C. Crystals of InVO4 of typical size 0.5 × 1 × 7 mm3 were obtained using copper pyrovanadate (Cu2V2O7) as a flux, using Pt crucibles. X-ray powder diffraction confirmed the orthorhombic Cmcm structure. Rests of the flux material were observed on the sample surface, with occasional traces of Pt indicating some level of reaction with the crucible. X-ray absorption spectroscopy showed that oxidation states of indium and vanadium ions are +3 and +5, respectively. The size and high quality of the obtained InVO4 crystals makes them excellent candidates for further study of their physical properties.
  • Item
    Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y)
    (Cambridge : RSC, 2023) Yang, Wei; Rosenkranz, Marco; Velkos, Georgios; Ziegs, Frank; Dubrovin, Vasilii; Schiemenz, Sandra; Spree, Lukas; de Souza Barbosa, Matheus Felipe; Guillemard, Charles; Valvidares, Manuel; Büchner, Bernd; Liu, Fupin; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm−1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.
  • Item
    Solvent-antisolvent interactions in metal halide perovskites
    (Cambridge : Soc., 2023) Bautista-Quijano, Jose Roberto; Telschow, Oscar; Paulus, Fabian; Vaynzof, Yana
    The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
  • Item
    Room temperature ionic liquids with two symmetric ions
    (Cambridge : RSC, 2023) Rauber, Daniel; Philippi, Frederik; Schroeder, Daniel; Morgenstern, Bernd; White, Andrew J. P.; Jochum, Marlon; Welton, Tom; Kay, Christopher W. M.
    Room temperature ionic liquids typically contain asymmetric organic cations. The asymmetry is thought to enhance disorder, thereby providing an entropic counter-balance to the strong, enthalpic, ionic interactions, and leading, therefore, to lower melting points. Unfortunately, the synthesis and purification of such asymmetric cations is typically more demanding. Here we introduce novel room temperature ionic liquids in which both cation and anion are formally symmetric. The chemical basis for this unprecedented behaviour is the incorporation of ether-containing side chains - which increase the configurational entropy - in the cation. Molecular dynamics simulations indicate that the ether-containing side chains transiently sample curled configurations. Our results contradict the long-standing paradigm that at least one asymmetric ion is required for ionic liquids to be molten at room temperature, and hence open up new and simpler design pathways for these remarkable materials.
  • Item
    Thermo-Responsive Ultrafiltration Block Copolymer Membranes Based on Polystyrene-block-poly(diethyl acrylamide)
    (Weinheim : Wiley-VCH GmbH, 2023) Frieß, Florian V.; Hartmann, Frank; Gemmer, Lea; Pieschel, Jens; Niebuur, Bart‐Jan; Faust, Matthias; Kraus, Tobias; Presser, Volker; Gallei, Markus
    Within the present work, a thermo-responsive ultrafiltration membrane is manufactured based on a polystyrene-block-poly(diethyl acrylamide) block copolymer (BCP). The poly(diethyl acrylamide) block segment features a lower critical solution temperature (LCST) in water, similar to the well-known poly(N-isopropylacrylamide), but having increased biocompatibility and without exhibiting a hysteresis of the thermally induced switching behavior. The BCP is synthesized via sequential “living” anionic polymerization protocols and analyzed by 1H-NMR spectroscopy, size exclusion chromatography, and differential scanning calorimetry. The resulting morphology in the bulk state is investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealing the intended hexagonal cylindrical morphology. The BCPs form micelles in a binary mixture of tetrahydrofuran and dimethylformamide, where BCP composition and solvent affinities are discussed in light of the expected structure of these micelles and the resulting BCP membrane formation. The membranes are manufactured using the non-solvent induced phase separation (NIPS) process and are characterized via scanning electron microscopy (SEM) and water permeation measurements. The latter are carried out at room temperature and at 50 °C revealing up to a 23-fold increase of the permeance, when crossing the LCST of the poly(diethyl acrylamide) block segment in water.
  • Item
    Selective Pb2+ removal and electrochemical regeneration of fresh and recycled FeOOH
    ([Erscheinungsort nicht ermittelbar] : Tsinghua Press, 2023) Wang, Lei; Deligniere, Lexane; Husmann, Samantha; Leiner, Regina; Bahr, Carsten; Zhang, Shengjie; Dun, Chaochao; Montemore, Matthew M.; Gallei, Markus; Urban, Jeffrey J.; Kim, Choonsoo; Presser, Volker
    Heavy metal pollution is a key environmental problem. Selectively extracting heavy metals could accomplish water purification and resource recycling simultaneously. Adsorption is a promising approach with a facile process, adaptability for the broad concentration of feed water, and high selectivity. However, the adsorption method faces challenges in synthesizing high-performance sorbents and regenerating adsorbents effectively. FeOOH is an environmentally friendly sorbent with low-cost production on a large scale. Nevertheless, the selectivity behavior and regeneration of FeOOH are seldom studied. Therefore, we investigated the selectivity of FeOOH in a mixed solution of Co2+, Ni2+, and Pb2+ and proposed to enhance the capacity of FeOOH and regenerate it by using external charges. Without charge, the FeOOH electrode shows a Pb2+ uptake capacity of 20 mg/g. After applying a voltage of −0.2/+0.8 V, the uptake capacity increases to a maximum of 42 mg/g and the desorption ratio is 70%–80%. In 35 cycles, FeOOH shows a superior selectivity towards Pb2+ compared with Co2+ and Ni2+, with a purity of 97% ± 3% in the extracts. The high selectivity is attributed to the lower activation energy for Pb2+ sorption. The capacity retentions at the 5th and the 35th cycles are ca. 80% and ca. 50%, respectively, comparable to the chemical regeneration method. With industrially exhausted granular ferric hydroxide as the electrode material, the system exhibits a Pb2+ uptake capacity of 37.4 mg/g with high selectivity. Our work demonstrates the feasibility of regenerating FeOOH by charge and provides a new approach for recycling and upcycling FeOOH sorbent. [Figure not available: see fulltext.]