Search Results

Now showing 1 - 8 of 8
  • Item
    Mechanically Stable, Binder‐Free, and Free‐Standing Vanadium Trioxide/Carbon Hybrid Fiber Electrodes for Lithium‐Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Bornamehr, Behnoosh; Gallei, Markus; Husmann, Samantha; Presser, Volker
    Binder is a crucial component in present-day battery electrodes but commonly contains fluorine and requires coating processing using organic (often toxic) solvents. Preparing binder-free electrodes is an attractive strategy to make battery electrode production and its end-of-use waste greener and safer. Herein, electrospinning is employed to prepare binder-free and self-standing electrodes. Such electrodes often suffer from low flexibility, and the correlation between performance and flexibility is usually overlooked. Processing parameters affect the mechanical properties of the electrodes, and for the first time it is reported that mechanical flexibility directly influences the electrochemical performance of the electrode. The importance is highlighted when processing parameters advantageous to powder materials, such as a higher heat treatment temperature, harm self-standing electrodes due to deterioration of fiber flexibility. Other strategies, such as conductive carbon addition, can be employed to improve the cell performance, but their effect on the mechanical properties of the electrodes must be considered. Rapid heat treatment achieves self-standing V2O3 with a capacity of 250 mAh g−1 at 250 mA g−1 and 390 mAh g−1 at 10 mA g−1
  • Item
    Encapsulation of bacteria in bilayer Pluronic thin film hydrogels: A safe format for engineered living materials
    (Amsterdam : Elsevier, 2023) Bhusari, Shardul; Kim, Juhyun; Polizzi, Karen; Sankaran, Shrikrishnan; del Campo, Aránzazu
    In engineered living materials (ELMs) non-living matrices encapsulate microorganisms to acquire capabilities like sensing or biosynthesis. The confinement of the organisms to the matrix and the prevention of overgrowth and escape during the lifetime of the material is necessary for the application of ELMs into real devices. In this study, a bilayer thin film hydrogel of Pluronic F127 and Pluronic F127 acrylate polymers supported on a solid substrate is introduced. The inner hydrogel layer contains genetically engineered bacteria and supports their growth, while the outer layer acts as an envelope and does not allow leakage of the living organisms outside of the film for at least 15 days. Due to the flat and transparent nature of the construct, the thin layer is suited for microscopy and spectroscopy-based analyses. The composition and properties of the inner and outer layer are adjusted independently to fulfil viability and confinement requirements. We demonstrate that bacterial growth and light-induced protein production are possible in the inner layer and their extent is influenced by the crosslinking degree of the used hydrogel. Bacteria inside the hydrogel are viable long term, they can act as lactate-sensors and remain active after storage in phosphate buffer at room temperature for at least 3 weeks. The versatility of bilayer bacteria thin-films is attractive for fundamental studies and for the development of application-oriented ELMs.
  • Item
    Discovery of a high-performance phage-derived promoter/repressor system for probiotic lactobacillus engineering
    (Cold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2023) Blanch-Asensio, Marc; Tadimarri, Varun Sai; Wilk, Alina; Sankaran, Shrikrishnan
    Background: The Lactobacillus family comprises many species of great importance for the food and healthcare industries, with numerous strains identified as beneficial for humans and used as probiotics. Hence, there is a growing interest in engineering these probiotic bacteria as live biotherapeutics for animals and humans. However, the genetic parts needed to regulate gene expression in these bacteria remain limited compared to model bacteria like E. coli or B. subtilis. To address this deficit, in this study, we selected and tested several bacteriophage-derived genetic parts with the potential to regulate transcription in lactobacilli. Results: We screened genetic parts from 6 different lactobacilli-infecting phages and identified one promoter/repressor system with unprecedented functionality in L. plantarum WCFS1. The phage-derived promoter was found to achieve expression levels nearly 9-fold higher than the previously reported strongest promoter in this strain and the repressor was able to almost completely repress this expression by reducing it nearly 500-fold. Conclusions: The new parts and insights gained from their engineering will enhance the genetic programmability of lactobacilli for healthcare and industrial applications. Competing Interest Statement: A patent application has been filed based on the results of this work (Application no. is DE 102022 119024.2).
  • Item
    Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques
    (Basel : Molecular Diversity Preservation International, 2023) Infante, Victor Hugo Pacagnelli; Bennewitz, Roland; Klein, Anna Lena; Meinke, Martina C.
    The presence of mechanoreceptors in glabrous skin allows humans to discriminate textures by touch. The amount and distribution of these receptors defines our tactile sensitivity and can be affected by diseases such as diabetes, HIV-related pathologies, and hereditary neuropathies. The quantification of mechanoreceptors as clinical markers by biopsy is an invasive method of diagnosis. We report the localization and quantification of Meissner corpuscles in glabrous skin using in vivo, non-invasive optical microscopy techniques. Our approach is supported by the discovery of epidermal protrusions which are co-localized with Meissner corpuscles. Index fingers, small fingers, and tenar palm regions of ten participants were imaged by optical coherence tomography (OCT) and laser scan microscopy (LSM) to determine the thickness of the stratum corneum and epidermis and to count the Meissner corpuscles. We discovered that regions containing Meissner corpuscles could be easily identified by LSM with an enhanced optical reflectance above the corpuscles, caused by a protrusion of the strongly reflecting epidermis into the stratum corneum with its weak reflectance. We suggest that this local morphology above Meissner corpuscles has a function in tactile perception.
  • Item
    Self-Healing Iron Oxide Polyelectrolyte Nanocomposites: Influence of Particle Agglomeration and Water on Mechanical Properties
    (Basel : MDPI, 2023) Oberhausen, Bastian; Plohl, Ajda; Niebuur, Bart-Jan; Diebels, Stefan; Jung, Anne; Kraus, Tobias; Kickelbick, Guido
    Self-healing nanocomposites can be generated by organic functionalization of inorganic nanoparticles and complementary functionalization of the polymer matrix, allowing reversible interactions between the two components. Here, we report on self-healing nanocomposites based on ionic interactions between anionic copolymers consisting of di(ethylene glycol) methyl ether methacrylate, sodium 4-(methacryloyloxy)butan-1-sulfonate, and cationically functionalized iron oxide nanoparticles. The materials exhibited hygroscopic behavior. At water contents < 6%, the shear modulus was reduced by up to 90%. The nanoparticle concentration was identified as a second factor strongly influencing the mechanical properties of the materials. Backscattered scanning electron microscopy and small-angle X-ray scattering measurements showed the formation of agglomerates in the size range of 100 nm to a few µm in diameter, independent of concentration, resulting in the disordering of the semi-crystalline ionic polymer blocks. These effects resulted in an increase in the shear modulus of the composite from 3.7 MPa to 5.6 MPa, 6.3 Mpa, and 7.5 MPa for 2, 10, and 20 wt% particles, respectively. Temperature-induced self-healing was possible for all composites investigated. However, only 36% of the maximum stress could be recovered in systems with a low nanoparticle content, whereas the original properties were largely restored (>85%) at higher particle contents.
  • Item
    Real-time monitoring of cell surface protein arrival with split luciferases
    (Oxford : Wiley-Blackwell, 2023) Fischer, Alexandra A. M.; Schatz, Larissa; Baaske, Julia; Römer, Winfried; Weber, Wilfried; Thuenauer, Roland
    Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.
  • Item
    Ageing-associated small RNA cargo of extracellular vesicles
    (Philadelphia, Pa. : Taylor & Francis, 2023) Kern, Fabian; Kuhn, Thomas; Ludwig, Nicole; Simon, Martin; Gröger, Laura; Fabis, Natalie; Aparicio-Puerta, Ernesto; Salhab, Abdulrahman; Fehlmann, Tobias; Hahn, Oliver; Engel, Annika; Wagner, Viktoria; Koch, Marcus; Winek, Katarzyna; Soreq, Hermona; Nazarenko, Irina; Fuhrmann, Gregor; Wyss-Coray, Tony; Meese, Eckart; Keller, Verena; Laschke, Matthias W.; Keller, Andreas
    Previous work on murine models and humans demonstrated global as well as tissue-specific molecular ageing trajectories of RNAs. Extracellular vesicles (EVs) are membrane vesicles mediating the horizontal transfer of genetic information between different tissues. We sequenced small regulatory RNAs (sncRNAs) in two mouse plasma fractions at five time points across the lifespan from 2–18 months: (1) sncRNAs that are free-circulating (fc-RNA) and (2) sncRNAs bound outside or inside EVs (EV-RNA). Different sncRNA classes exhibit unique ageing patterns that vary between the fcRNA and EV-RNA fractions. While tRNAs showed the highest correlation with ageing in both fractions, rRNAs exhibited inverse correlation trajectories between the EV- and fc-fractions. For miRNAs, the EV-RNA fraction was exceptionally strongly associated with ageing, especially the miR-29 family in adipose tissues. Sequencing of sncRNAs and coding genes in fat tissue of an independent cohort of aged mice up to 27 months highlighted the pivotal role of miR-29a-3p and miR-29b-3p in ageing-related gene regulation that we validated in a third cohort by RT-qPCR.
  • Item
    Engineered living materials for the conversion of a low-cost food-grade precursor to a high-value flavonoid
    (Lausanne : Frontiers Media, 2023) Riedel, Florian; Bartolomé, Maria Puertas; Enrico, Lara Luana Teruel; Fink-Straube, Claudia; Duong, Cao Nguyen; Gherlone, Fabio; Huang, Ying; Valiante, Vito; Del Campo, Aránzazu; Sankaran, Shrikrishnan
    Microbial biofactories allow the upscaled production of high-value compounds in biotechnological processes. This is particularly advantageous for compounds like flavonoids that promote better health through their antioxidant, anti-bacterial, anti-cancer and other beneficial effects but are produced in small quantities in their natural plant-based hosts. Bacteria like E. coli have been genetically modified with enzyme cascades to produce flavonoids like naringenin and pinocembrin from coumaric or cinnamic acid. Despite advancements in yield optimization, the production of these compounds still involves high costs associated with their biosynthesis, purification, storage and transport. An alternative production strategy could involve the direct delivery of the microbial biofactories to the body. In such a strategy, ensuring biocontainment of the engineered microbes in the body and controlling production rates are major challenges. In this study, these two aspects are addressed by developing engineered living materials (ELMs) consisting of probiotic microbial biofactories encapsulated in biocompatible hydrogels. Engineered probiotic E. coli Nissle 1917 able to efficiently convert cinnamic acid into pinocembrin were encapsulated in poly(vinyl alcohol)-based hydrogels. The biofactories are contained in the hydrogels for a month and remain metabolically active during this time. Control over production levels is achieved by the containment inside the material, which regulates bacteria growth, and by the amount of cinnamic acid in the medium.