Search Results

Now showing 1 - 10 of 22
  • Item
    Strong and ductile high temperature soft magnets through Widmanstätten precipitates
    ([London] : Nature Publishing Group UK, 2023) Han, Liuliu; Maccari, Fernando; Soldatov, Ivan; Peter, Nicolas J.; Souza Filho, Isnaldi R.; Schäfer, Rudolf; Gutfleisch, Oliver; Li, Zhiming; Raabe, Dierk
    Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.
  • Item
    Directed exciton transport highways in organic semiconductors
    ([London] : Nature Publishing Group UK, 2023) Müller, Kai; Schellhammer, Karl S.; Gräßler, Nico; Debnath, Bipasha; Liu, Fupin; Krupskaya, Yulia; Leo, Karl; Knupfer, Martin; Ortmann, Frank
    Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor–acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.
  • Item
    Evolutionary design of explainable algorithms for biomedical image segmentation
    ([London] : Nature Publishing Group UK, 2023) Cortacero, Kévin; McKenzie, Brienne; Müller, Sabina; Khazen, Roxana; Lafouresse, Fanny; Corsaut, Gaëlle; Van Acker, Nathalie; Frenois, François-Xavier; Lamant, Laurence; Meyer, Nicolas; Vergier, Béatrice; Wilson, Dennis G.; Luga, Hervé; Staufer, Oskar; Dustin, Michael L.; Valitutti, Salvatore; Cussat-Blanc, Sylvain
    An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.
  • Item
    Is there more than one stickiness criterion?
    (Berlin ; Heidelberg : Springer, 2022) Wang, Anle; Müser, Martin H.
    Adhesion between an elastic body and a smooth, rigid substrate can lead to large tensile stresses between them. However, most macroscopic objects are microscopically rough, which strongly suppresses adhesion. A fierce debate has unfolded recently as to whether local or global parameters determine the crossover between small and large adhesion. Here, we report simulations revealing that the dependence of the pull-off force Fn on the surface energy γ does not only have two regimes of high and low adhesion but up to four regimes. They are related to contacts, which at the moment of rupture consist of (i) the last individual Hertzian-shaped contact, in which is linear in γ, (ii) a last meso-scale, individual patches with super-linear scaling, (iii) many isolated contact patches with extremely strong scaling, and (iv) a dominating largest contact patch, for which the pull-off stress is no longer negligible compared to the maximum, microscopic pull-off stress. Regime (iii) can be seen as a transition domain. It is located near the point where the surface energy is half the elastic energy per unit area in conformal contact. A criterion for the transition between regimes (i) and (ii) appears difficult to grasp. [Figure not available: see fulltext.].
  • Item
    Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5
    ([London] : Nature Publishing Group UK, 2024) He, Ge; Peis, Leander; Cuddy, Emma Frances; Zhao, Zhen; Li, Dong; Zhang, Yuhang; Stumberger, Romona; Moritz, Brian; Yang, Haitao; Gao, Hongjun; Devereaux, Thomas Peter; Hackl, Rudi
    The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 2Δmax/kBTCDW≈20, far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.
  • Item
    Calorimetric evidence for two phase transitions in Ba1−xKxFe2As2 with fermion pairing and quadrupling states
    ([London] : Nature Publishing Group UK, 2023) Shipulin, Ilya; Stegani, Nadia; Maccari, Ilaria; Kihou, Kunihiro; Lee, Chul-Ho; Hu, Quanxin; Zheng, Yu; Yang, Fazhi; Li, Yongwei; Yim, Chi-Ming; Hühne, Ruben; Klauss, Hans-Henning; Putti, Marina; Caglieris, Federico; Babaev, Egor; Grinenko, Vadim
    Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (T c). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z 2 time-reversal symmetry was reported in Ba1−xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z 2 time-reversal symmetry is broken (TcZ2>Tc). Here, we report on detecting two anomalies in the specific heat of Ba1−xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z 2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.
  • Item
    Intermolecular charge transfer enhances the performance of molecular rectifiers
    (Washington, DC [u.a.] : Assoc., 2022) Sullivan, Ryan P.; Morningstar, John T.; Castellanos-Trejo, Eduardo; Bradford, Robert W.; Hofstetter, Yvonne J.; Vaynzof, Yana; Welker, Mark E.; Jurchescu, Oana D.
    Molecular-scale diodes made from self-assembled monolayers (SAMs) could complement silicon-based technologies with smaller, cheaper, and more versatile devices. However, advancement of this emerging technology is limited by insufficient electronic performance exhibited by the molecular current rectifiers. We overcome this barrier by exploiting the charge-transfer state that results from co-assembling SAMs of molecules with strong electron donor and acceptor termini. We obtain a substantial enhancement in current rectification, which correlates with the degree of charge transfer, as confirmed by several complementary techniques. These findings provide a previously enexplored method for manipulating the properties of molecular electronic devices by exploiting donor/acceptor interactions. They also serve as a model test platform for the study of doping mechanisms in organic systems. Our devices have the potential for fast widespread adoption due to their low-cost processing and self-assembly onto silicon substrates, which could allow seamless integration with current technologies.
  • Item
    Bioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses
    ([London] : Macmillan Publishers Limited, 2024) Kirste, Gloria; Contreras Jaimes, Altair; de Pablos-Martín, Araceli; de Souza e Silva, Juliana Martins; Massera, Jonathan; Hill, Robert G.; Brauer, Delia S.
    Crystallisation of bioactive glasses has been claimed to negatively affect the ion release from bioactive glasses. Here, we compare ion release and mineralisation in Tris–HCl buffer solution for a series of glass–ceramics and their parent glasses in the system SiO2–CaO–P2O5–CaF2. Time-resolved X-ray diffraction analysis of glass–ceramic degradation, including quantification of crystal fractions by full pattern refinement, show that the glass–ceramics precipitated apatite faster than the corresponding glasses, in agreement with faster ion release from the glass–ceramics. Imaging by transmission electron microscopy and X-ray nano-computed tomography suggest that this accelerated degradation may be caused by the presence of nano-sized channels along the internal crystal/glassy matrix interfaces. In addition, the presence of crystalline fluorapatite in the glass–ceramics facilitated apatite nucleation and crystallisation during immersion. These results suggest that the popular view of bioactive glass crystallisation being a disadvantage for degradation, apatite formation and, subsequently, bioactivity may depend on the actual system study and, thus, has to be reconsidered.
  • Item
    Probing magnetic properties at the nanoscale: in-situ Hall measurements in a TEM
    ([London] : Macmillan Publishers Limited, 2023) Pohl, Darius; Lee, Yejin; Kriegner, Dominik; Beckert, Sebastian; Schneider, Sebastian; Rellinghaus, Bernd; Thomas, Andy
    We report on advanced in-situ magneto-transport measurements in a transmission electron microscope. The approach allows for concurrent magnetic imaging and high resolution structural and chemical characterization of the same sample. Proof-of-principle in-situ Hall measurements on presumably undemanding nickel thin films supported by micromagnetic simulations reveal that in samples with non-trivial structures and/or compositions, detailed knowledge of the latter is indispensable for a thorough understanding and reliable interpretation of the magneto-transport data. The proposed in-situ approach is thus expected to contribute to a better understanding of the Hall signatures in more complex magnetic textures.
  • Item
    Reversibly growing crosslinked polymers with programmable sizes and properties
    ([London] : Nature Publishing Group UK, 2023) Zhou, Xiaozhuang; Zheng, Yijun; Zhang, Haohui; Yang, Li; Cui, Yubo; Krishnan, Baiju P.; Dong, Shihua; Aizenberg, Michael; Xiong, Xinhong; Hu, Yuhang; Aizenberg, Joanna; Cui, Jiaxi
    Growth constitutes a powerful method to post-modulate materials’ structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.