Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries

2018-2-6, Madian, Mahmoud, Eychmüller, Alexander, Giebeler, Lars

The lithium ion battery (LIB) has proven to be a very reliably used system to store electrical energy, for either mobile or stationary applications. Among others, TiO2-based anodes are the most attractive candidates for building safe and durable lithium ion batteries with high energy density. A variety of TiO2 nanostructures has been thoroughly investigated as anodes in LIBs, e.g., nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes discussed either in their pure form or in composites. In this review, we present the recent developments and breakthroughs demonstrated to synthesize safe, high power, and low cost nanostructured titania-based anodes. The reader is provided with an in-depth review of well-oriented TiO2-based nanotubes fabricated by anodic oxidation. Other strategies for modification of TiO2-based anodes with other elements or materials are also highlighted in this report.

Loading...
Thumbnail Image
Item

Microstructure and Mechanical Behavior of Al-Mg Composites Synthesized by Reactive Sintering

2018-9-25, Shahid, Rub Nawaz, Scudino, Sergio

Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.

Loading...
Thumbnail Image
Item

Floating zone growth of Bi2Sr2Ca2Cu3Oy superconductor

2016, Maljuk, Andrey, Lin, C.T.

The crystal growth of high-temperature oxide superconductors has been hampered by the complexities of these materials and the lack of knowledge of corresponding phase diagrams. The most common crystal growth technique adopted for these materials is the so-called “Flux” method. This method, however, suffers from several drawbacks: (i) crystals are often crucible and flux contaminated; (ii) crystals are difficult to detach from solidified melt; and (iii) crystals are rather small. In most cases, these drawbacks can be overcome by the crucible-free floating zone method. Moreover, this technique is suitable for crystal growth of incongruently melting compounds, and has been thus successfully used to make large single crystals of Bi2Sr2Ca2Cu3Oy superconductor. In this review, the authors summarize the published and their own growth efforts as well as detailed characterization of as-grown and post-growth annealed samples. The optimal growth conditions that allowed one to obtain the large-size, almost single phase and homogeneous in composition Bi2Sr2Ca2Cu3Oy single crystals are presented. The effect of long lasting post-growth heat treatment on both crystal quality and superconducting properties has also been demonstrated.

Loading...
Thumbnail Image
Item

New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium Conditions

2018-11-19, Puszkiel, Julián, Castro Riglos, M. Victoria, Ramallo-López, José, Mizrahi, Martin, Gemming, Thomas, Pistidda, Claudio, Arneodo Larochette, Pierre, Bellosta von Colbe, José, Klassen, Thomas, Dornheim, Martin, Gennari, Fabiana

Mg2FeH6 is regarded as potential hydrogen and thermochemical storage medium due to its high volumetric hydrogen (150 kg/m3) and energy (0.49 kWh/L) densities. In this work, the mechanism of formation of Mg2FeH6 under equilibrium conditions is thoroughly investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples taken at different states upon hydrogenation under equilibrium conditions confirm that the formation mechanism of Mg2FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex hydride at boundaries of the Fe seeds. The formation of MgH2 is enhanced by the presence of Fe. However, MgH2 does not take part as intermediate for the formation of Mg2FeH6 and acts as solid-solid diffusion barrier which hinders the complete formation of Mg2FeH6. This work provides novel insight about the formation mechanism of Mg2FeH6.

Loading...
Thumbnail Image
Item

Graphene-Like ZnO: A Mini Review

2016, Ta, Huy Q., Zhao, Liang, Pohl, Darius, Pang, Jinbo, Trzebicka, Barbara, Rellinghaus, Bernd, Pribat, Didier, Gemming, Thomas, Liu, Zhongfan, Bachmatiuk, Alicja, Rümmeli, Mark H.

The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.

Loading...
Thumbnail Image
Item

Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System

2017-4-12, Freudenberger, Jens, Rafaja, David, Geissler, David, Giebeler, Lars, Ullrich, Christiane, Kauffmann, Alexander, Heilmaier, Martin, Nielsch, Kornelius

A single-phase solid solution is observed in quaternary and quinary alloys obtained from gold, copper, nickel, palladium and platinum. The lattice parameters of the alloys follow the linear rule of mixture when considering the lattice parameters of the elements and their concentration. The elements are a priori not homogeneously distributed within the respective alloys resulting in segregations. These segregations cause a large broadening of X-ray lines, which is accessed in the present article. This correlation is visualized by the help of local element mappings utilizing scanning electron microscopy including energy dispersive X-ray analysis and their quantitative analysis.