Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

CVD-Grown CNTs on Basalt Fiber Surfaces for Multifunctional Composite Interphases

2016, Förster, Theresa, Hao, Bin, Mäder, Edith, Simon, Frank, Wölfel, Enrico, Ma, Peng-Cheng

Chemical vapor deposition (CVD) is used as a method for the synthesis of carbon nanotubes (CNT) on substrates, most commonly pre-treated by a metal-catalyst. In this work, the capability of basalt fiber surfaces was investigated in order to stimulate catalyst-free growth of carbon nanotubes. We have carried out CVD experiments on unsized, sized, and NaOH-treated basalt fibers modified by growth temperature and a process gas mixture. Subsequently, we investigated the fiber surfaces by SEM, AFM, XPS and carried out single fiber tensile tests. Growth temperatures of 700 °C as well as 800 °C may induce CNT growth, but depending on the basalt fiber surface, the growth process was differently affected. The XPS results suggest surficial iron is not crucial for the CNT growth. We demonstrate that the formation of a corrosion shell is able to support CNT networks. However, our investigations do not expose distinctively the mechanisms by which unsized basalt fibers sometimes induce vertically aligned CNT carpets, isotropically arranged CNTs or no CNT growth. Considering data from the literature and our AFM results, it is assumed that the nano-roughness of surfaces could be a critical parameter for CNT growth. These findings will motivate the design of future experiments to discover the role of surface roughness as well as surface defects on the formation of hierarchical interphases.

Loading...
Thumbnail Image
Item

Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays

2011, Mahanandia, P., Schneider, J.J., Engel, M., Stühn, B., Subramanyam, S.V., Nanda, K.K.

We report the synthesis of aligned arrays of millimeter long carbon nanotubes (CNTs), from benzene and ferrocene as the molecular precursor and catalyst respectively, by a one-step chemical vapor deposition technique. The length of the grown CNTs depends on the reaction temperature and increases from ~85 μm to ~1.4 mm when the synthesis temperature is raised from 650 to 1100°C, while the tube diameter is almost independent of the preparation temperature and is ~80 nm. The parallel arrangement of the CNTs, as well as their tube diameter can be verified spectroscopically by small angle X-ray scattering (SAXS) studies. Based on electron diffraction scattering (EDS) studies of the top and the base of the CNT films, a root growth process can be deduced.