Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project*

2011, Fassbender, R., Böhringer, H., Nastasi, A., Šuhada, R., Mühlegger, M., De Hoon, A., Kohnert, J., Lamer, G., Mohr, J.J., Pierini, D., Pratt, G.W., Quintana, H., Rosati, P., Santos, J.S., Schwope, A.D.

We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 < z ≲ 1.6 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg 2 of noncontiguous deep archival XMM-Newton coverage, of which 49.4 deg 2 are part of the core survey with a quantifiable selection function and 17.7 deg 2 are classified as 'gold' coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ̃ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCPJ0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ≥ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M 200 ≃ 2×10 14 M ⊙, while the probed mass range for the distant clusters spans approximately (0.7-7)×10 14 M ⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm 12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1' from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to lowz systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass.

Loading...
Thumbnail Image
Item

The CALIFA Survey: Exploring the Oxygen Abundance in the Local Universe

2015, Sánchez, Sebastian, Sánchez-Menguiano, Laura, Marino, Raffaella, Rosales-Ortega, F., Pérez, Isabel, de Paz, Armando, Pérez, Enrique, Walcher, C., López-Cobá, Carlos

We present here a review of the latest results on the spatially-resolved analysis of the stellar populations and ionized gas of disk-dominated galaxies based on Calar Alto Legacy Integral Field Area (CALIFA) data. CALIFA is an ongoing integral field spectroscopy (IFS) survey of galaxies in the Local Universe (0.005 < z < 0.03) that has already obtained spectroscopic information up to ∼2.5 re with a spatial resolution better than ∼1 kpc for a total number of more than 600 galaxies of different morphological types, covering the color-magnitude diagram up to MR<−18 mag. With nearly 2000 spectra obtained for each galaxy, CALIFA offers one of the best IFU datasets to study the star formation histories and chemical enrichment of galaxies. In this article, we focus on the main results from the analysis of the oxygen abundances based on the study of ionized gas in H II regions and individual spaxels and their relation to the global properties of galaxies, using an updated/revised dataset with more galaxies and ionized regions. In summary, we have confirmed previous published results indicating that: (1) the M-Z relation does not present a secondary relation to the star formation rate, when the abundance is measured at the effective radius; (2) the oxygen abundance presents a strong correlation with the stellar surface density (∑-Z relation); (3) the oxygen abundance profiles present three well-defined regimes: (i) an overall negative radial gradient between 0.5 and 2 re, with a characteristic slope of αO/H ∼−0.1 dex/re; (ii) a universal flattening beyond >2 re; and (iii) an inner drop at <0.5 re that depends on mass; (4) the presence of bending in the surface brightness profile of disk galaxies is not clearly related to either the change in the shape of the oxygen abundance profile or the properties of the underlying stellar population. All of these results indicate that disk galaxies present an overall inside-out growth, with chemical enrichment and stellar mass growth tightly correlated and dominated by local processes and limited effects of radial mixing or global outflows. However, clear deviations are shown with respect to this simple scenario, which affect the abundance profiles in both the innermost and outermost regions of galaxies

Loading...
Thumbnail Image
Item

The dynamical evolution of planetary nebulae

2016, Schönberner, Detlef

Based on modern 1D-radiation-hydrodynamics simulations of formation and evolution of planetary nebulae, I discuss in detail the basic dynamical processes responsible for the "grand design" of most planetary nebulae, i.e. their double-shell morphology and their typical expansion properties. Special emphasis is given for a proper definition of a nebula's true expansion rate and its relation to spectroscopically measurable Doppler velocities of the expanding material. It is found that the typical nebular expansion is about twice as fast as hitherto assumed, viz. ≃45 kms-1.

Loading...
Thumbnail Image
Item

The Optical Variability of the BL Lac AO 0235+164

2016, Fan, Junhui, Kurtanidze, Omar, Liu, Yi, Liu, Xiang, Richter, Gotthard, Nikolashvili, Maria, Kurtanidze, Sophia, Chanishvili, Revaz, Wang, Hongtao, Sasada, Mahito, Zhou, Aiying, Lin, Chao, Yuan, Yuhai

In this work, we present optical R band observations of AO 0235+164 carried out during the period of November 2006 to December 2012 using the Ap6E CCD camera attached to the primary focus of the 70 cm meniscus telescope at Abastumani Observatory, Georgia. It shows a large variation of ΔR = 4.88 mag (14.19–19.07 mag) and a short time scale of ΔTv = 73.5 min during our monitoring period. When periodicity analysis methods are applied to the R-band data from both historic and our observations, periods P1 = 8.26 yr and P2 = 0.54 yr are found.