Search Results

Now showing 1 - 10 of 36
Loading...
Thumbnail Image
Item

Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries

2018-2-6, Madian, Mahmoud, Eychmüller, Alexander, Giebeler, Lars

The lithium ion battery (LIB) has proven to be a very reliably used system to store electrical energy, for either mobile or stationary applications. Among others, TiO2-based anodes are the most attractive candidates for building safe and durable lithium ion batteries with high energy density. A variety of TiO2 nanostructures has been thoroughly investigated as anodes in LIBs, e.g., nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes discussed either in their pure form or in composites. In this review, we present the recent developments and breakthroughs demonstrated to synthesize safe, high power, and low cost nanostructured titania-based anodes. The reader is provided with an in-depth review of well-oriented TiO2-based nanotubes fabricated by anodic oxidation. Other strategies for modification of TiO2-based anodes with other elements or materials are also highlighted in this report.

Loading...
Thumbnail Image
Item

Graphene-Like ZnO: A Mini Review

2016, Ta, Huy Q., Zhao, Liang, Pohl, Darius, Pang, Jinbo, Trzebicka, Barbara, Rellinghaus, Bernd, Pribat, Didier, Gemming, Thomas, Liu, Zhongfan, Bachmatiuk, Alicja, Rümmeli, Mark H.

The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.

Loading...
Thumbnail Image
Item

Evaluation of surface cleaning procedures for CTGS substrates for SAW technology with XPS

2017, Brachmann, Erik, Seifert, Marietta, Oswald, Steffen, Menzel, Siegfried B., Gemming, Thomas

A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW) technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.

Loading...
Thumbnail Image
Item

Capability study of Ti, Cr, W, Ta and Pt as seed layers for electrodeposited platinum films on γ-Al2O3 for high temperature and harsh environment applications

2017, Seifert, Marietta, Brachmann, Erik, Rane, Gayatri K., Menzel, Siegfried B., Gemming, Thomas

High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘ C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate.

Loading...
Thumbnail Image
Item

Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast

2018-5-15, Reichenbach, Philipp, Kämpfe, Thomas, Haußmann, Alexander, Thiessen, Andreas, Woike, Theo, Steudtner, Robin, Kocsor, Laura, Szaller, Zsuzsanna, Kovács, László, Eng, Lukas M.

In this review article, we discuss photoluminescence phenomena mediated by polarons in lithium niobate (LNO). At first we present the fundamentals on polaron states in LNO and their energy levels, i.e., on free and bound electron polarons, on hole polarons as well as on bipolarons. We discuss the absorption measurements on reduced as well as on doped LNO that made the characterization of the formed polaron states possible by their absorption bands. Next, we proceed by reporting on the two polaron-mediated photoluminescence bands that have been observed in LNO: (1) A near-infrared luminescence band in the range of 1.5 eV shows a mono-exponential decay and a strong dependence on iron doping. This luminescence is emitted by bound polarons returning from an excited state to the ground state. (2) A luminescence band at visible wavelengths with a maximum at 2.6 eV shows a stretched-exponential decay and is strongly enhanced by optical damage resistant doping around the doping threshold. This luminescence stems from the recombination of free electron and hole polarons. The next major topic of this review are domain contrasts of the visible photoluminescence that have been observed after electrical poling of the substrate, as singly inverted domains show a slightly reduced and faster decaying luminescence. Subsequent annealing results in an exponential decrease of that domain contrast. We show that this contrast decay is strongly related to the mobility of lithium ions, thus confirming the role of polar defect complexes, including lithium vacancies, for these domain contrasts. Finally we discuss the extension of our investigations to lithium tantalate (LTO) samples. While the results on the domain contrast and its decay are similar to LNO, there are remarkable differences in their luminescence spectra.

Loading...
Thumbnail Image
Item

Tungsten as a chemically-stable electrode material on Ga-containing piezoelectric substrates langasite and catangasite for high-temperature saw devices

2016, Rane, Gayatri K., Seifert, Marietta, Menzel, Siegfried, Gemming, Thomas, Eckert, Jürgen

Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.

Loading...
Thumbnail Image
Item

Surface effects and challenges for application of piezoelectric langasite substrates in surface acoustic wave devices caused by high temperature annealing under high vacuum

2015, Seifert, Marietta, Rane, Gayatri K., Kirbus, Benjamin, Menzel, Siegfried B., Gemming, Thomas

Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

Loading...
Thumbnail Image
Item

Floating zone growth of Bi2Sr2Ca2Cu3Oy superconductor

2016, Maljuk, Andrey, Lin, C.T.

The crystal growth of high-temperature oxide superconductors has been hampered by the complexities of these materials and the lack of knowledge of corresponding phase diagrams. The most common crystal growth technique adopted for these materials is the so-called “Flux” method. This method, however, suffers from several drawbacks: (i) crystals are often crucible and flux contaminated; (ii) crystals are difficult to detach from solidified melt; and (iii) crystals are rather small. In most cases, these drawbacks can be overcome by the crucible-free floating zone method. Moreover, this technique is suitable for crystal growth of incongruently melting compounds, and has been thus successfully used to make large single crystals of Bi2Sr2Ca2Cu3Oy superconductor. In this review, the authors summarize the published and their own growth efforts as well as detailed characterization of as-grown and post-growth annealed samples. The optimal growth conditions that allowed one to obtain the large-size, almost single phase and homogeneous in composition Bi2Sr2Ca2Cu3Oy single crystals are presented. The effect of long lasting post-growth heat treatment on both crystal quality and superconducting properties has also been demonstrated.

Loading...
Thumbnail Image
Item

Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve method

2011, Torrens-Serra, Joan, Venkataraman, Shankar, Stoica, Mihai, Kuehn, Uta, Roth, Stefan, Eckert, Jürgen

The non-isothermal transformation rate curves of metallic glasses are analyzed with the Master Curve method grounded in the Kolmogorov-Johnson-Mehl-Avrami theory. The method is applied to the study of two different metallic glasses determining the activation energy of the transformation and the experimental kinetic function that is analyzed using Avrami kinetics. The analysis of the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glassy powders gives Ea = 3.8 eV, in good agreement with the calculation by other methods, and a transformation initiated by an accelerating nucleation and diffusion-controlled growth. The other studied alloy is a Nanoperm-type Fe77Nb7B15Cu1 metallic glass with a primary crystallization of bcc-Fe. An activation energy of Ea = 5.7 eV is obtained from the Master Curve analysis. It is shown that the use of Avrami kinetics is not able to explain the crystallization mechanisms in this alloy giving an Avrami exponent of n = 1.

Loading...
Thumbnail Image
Item

Carbon nanotubes filled with ferromagnetic materials

2010, Weissker, Uhland, Hampel, Silke, Leonhardt, Albrecht, Büchner, Bernd

Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.