Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

2017-3-29, Schneider, Kai, Lieboldt, Matthias, Liebscher, Marco, Fröhlich, Maik, Hempel, Simone, Butler, Marko, Schröfl, Christof, Mechtcherine, Viktor

Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

Loading...
Thumbnail Image
Item

Coating of Carbon Nanotube Fibers: Variation of Tensile Properties, Failure Behavior, and Adhesion Strength

2015, Mäder, Edith, Liu, Jianwen, Hiller, Janett, Lu, Weibang, Li, Qingwen, Zhandarov, Serge, Chou, Tsu-Wei

An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength (IFSS) of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous-based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous-based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved, leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along the interface between the matrix and the outer fiber layer impregnated with the resin was observed for epoxy resin-coated fibers. These fibers have been successfully pulled out of the matrix droplets and shown that the average local interfacial shear stress value was 63 MPa (with apparent IFSS values 33–60 MPa). The interfacial frictional stress between the fiber and the matrix was rather high (9.5 MPa), which can be attributed to the complex structure of the interface and the fiber twisting.

Loading...
Thumbnail Image
Item

Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase

2018, Müller, Michael Thomas, Pötzsch, Hendrik Florian, Gohs, Uwe, Heinrich, Gert

An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

Loading...
Thumbnail Image
Item

CVD-Grown CNTs on Basalt Fiber Surfaces for Multifunctional Composite Interphases

2016, Förster, Theresa, Hao, Bin, Mäder, Edith, Simon, Frank, Wölfel, Enrico, Ma, Peng-Cheng

Chemical vapor deposition (CVD) is used as a method for the synthesis of carbon nanotubes (CNT) on substrates, most commonly pre-treated by a metal-catalyst. In this work, the capability of basalt fiber surfaces was investigated in order to stimulate catalyst-free growth of carbon nanotubes. We have carried out CVD experiments on unsized, sized, and NaOH-treated basalt fibers modified by growth temperature and a process gas mixture. Subsequently, we investigated the fiber surfaces by SEM, AFM, XPS and carried out single fiber tensile tests. Growth temperatures of 700 °C as well as 800 °C may induce CNT growth, but depending on the basalt fiber surface, the growth process was differently affected. The XPS results suggest surficial iron is not crucial for the CNT growth. We demonstrate that the formation of a corrosion shell is able to support CNT networks. However, our investigations do not expose distinctively the mechanisms by which unsized basalt fibers sometimes induce vertically aligned CNT carpets, isotropically arranged CNTs or no CNT growth. Considering data from the literature and our AFM results, it is assumed that the nano-roughness of surfaces could be a critical parameter for CNT growth. These findings will motivate the design of future experiments to discover the role of surface roughness as well as surface defects on the formation of hierarchical interphases.