Search Results

Now showing 1 - 8 of 8
  • Item
    Photocurrent modelling and experimental confirmation for meteoric smoke particle detectors on board atmospheric sounding rockets
    (Katlenburg-Lindau : Copernicus, 2018-9-20) Giono, Gabriel; Strelnikov, Boris; Asmus, Heiner; Staszak, Tristan; Ivchenko, Nickolay; Lübken, Franz-Josef
    Characterising the photoelectron current induced by the Sun's UV radiation is crucial to ensure accurate daylight measurements from particle detectors. This article lays out the methodology used to address this problem in the case of the meteoric smoke particle detectors (MSPDs), developed by the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) and flown on board the PMWEs (Polar Mesosphere Winter Echoes) sounding rockets in April 2018. The methodology focuses on two complementary aspects: modelling and experimental measurements. A detailed model of the MSPD photocurrent was created based on the expected solar UV flux, the atmospheric UV absorption as a function of height by molecular oxygen and ozone, the photoelectric yield of the material coating the MSPD as a function of wavelength, the index of refraction of these materials as a function of wavelength and the angle of incidence of the illumination onto the MSPD. Due to its complex structure, composed of a central electrode shielded by two concentric grids, extensive ray-tracing calculations were conducted to obtain the incidence angles of the illumination on the central electrode, and this was done for various orientations of the MSPD in respect to the Sun. Results of the modelled photocurrent at different heights and for different materials, as well as for different orientations of the detector, are presented. As a pre-flight confirmation, the model was used to reproduce the experimental measurements conducted by Robertson et al. (2014) and agrees within an order of magnitude. An experimental setup for the calibration of the MSPD photocurrent is also presented. The photocurrent induced by the Lyman-alpha line from a deuterium lamp was recorded inside a vacuum chamber using a narrowband filter, while a UV-sensitive photodiode was used to monitor the UV flux. These measurements were compared with the model prediction, and also matched within an order of magnitude. Although precisely modelling the photocurrent is a challenging task, this article quantitatively improved the understanding of the photocurrent on the MSPD and discusses possible strategies to untangle the meteoric smoke particles (MSPs) current from the photocurrent recorded in-flight.
  • Item
    High-molecular-weight esters in α-pinene ozonolysis secondary organic aerosol: Structural characterization and mechanistic proposal for their formation from highly oxygenated molecules
    (Katlenburg-Lindau : EGU, 2018) Kahnt, Ariane; Vermeylen, Reinhilde; Iinuma, Yoshiteru; Safi Shalamzari, Mohammad; Maenhaut, Willy; Claeys, Magda
    Stable high-molecular-weight esters are present in α-pinene ozonolysis secondary organic aerosol (SOA) with the two most abundant ones corresponding to a hydroxypinonyl ester of cis-pinic acid with a molecular weight (MW) of 368 (C19H28O7) and a diaterpenylic ester of cis-pinic acid with a MW of 358 (C17H26O8). However, their molecular structures are not completely elucidated and their relationship with highly oxygenated molecules (HOMs) in the gas phase is still unclear. In this study, liquid chromatography in combination with positive ion electrospray ionization mass spectrometry has been performed on high-molecular-weight esters present in α-pinene ozonolysis SOA with and without derivatization into methyl esters. Unambiguous evidence could be obtained for the molecular structure of the MWg368 ester in that it corresponds to an ester of cis-pinic acid where the carboxyl substituent of the dimethylcyclobutane ring and not the methylcarboxyl substituent is esterified with 7-hydroxypinonic acid. The same linkage was already proposed in previous work for the MWg358 ester (Yasmeen et al., 2010), but could be supported in the present study. Guided by the molecular structures of these stable esters, we propose a formation mechanism from gas-phase HOMs that takes into account the formation of an unstable C19H28O11 product, which is detected as a major species in α-pinene ozonolysis experiments as well as in the pristine forest atmosphere by chemical ionization-atmospheric pressure ionization-time-of-flight mass spectrometry with nitrate clustering (Ehn et al., 2012, 2014). It is suggested that an acyl peroxy radical related to cis-pinic acid (RO2•) and an alkoxy radical related to 7- or 5-hydroxypinonic acid (R′O•) serve as key gas-phase radicals and combine according to a RO2g+gR′O•→ gRO3R′ radical termination reaction. Subsequently, the unstable C19H28O11 HOM species decompose through the loss of oxygen or ketene from the inner part containing a labile trioxide function and the conversion of the unstable acyl hydroperoxide groups to carboxyl groups, resulting in stable esters with a molecular composition of C19H28O7 (MWg368) and C17H26O8 (MWg358), respectively. The proposed mechanism is supported by several observations reported in the literature. On the basis of the indirect evidence presented in this study, we hypothesize that RO2g+gR′O•→ gRO3R′ chemistry is at the underlying molecular basis of high-molecular-weight ester formation upon α-pinene ozonolysis and may thus be of importance for new particle formation and growth in pristine forested environments.
  • Item
    Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines
    ([London] : Nature Publishing Group UK, 2019) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Neumann, Helfried; Spannenberg, Anke; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.
  • Item
    Molecular movie of ultrafast coherent rotational dynamics of OCS
    ([London] : Nature Publishing Group UK, 2019) Karamatskos, Evangelos T.; Raabe, Sebastian; Mullins, Terry; Trabattoni, Andrea; Stammer, Philipp; Goldsztejn, Gildas; Johansen, Rasmus R.; Długołecki, Karol; Stapelfeldt, Henrik; Vrakking, Marc J. J.; Trippel, Sebastian; Rouzée, Arnaud; Küpper, Jochen
    Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment.
  • Item
    Bio-responsive polymer hydrogels homeostatically regulate blood coagulation
    (London : Nature Publishing Group, 2013) Maitz, Manfred F.; Freudenberg, U.; Tsurkan, M.V.; Fischer, M.; Beyrich, T.; Werner, C.
    Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which - in turn - becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules.
  • Item
    Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene
    (London : Nature Publishing Group, 2017) Liu, F.; Krylov, D.S.; Spree, L.; Avdoshenko, S.M.; Samoylova, N.A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A.U.B.; Büchner, B.; Popov, A.A.
    Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.
  • Item
    Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases
    (Göttingen : Copernicus GmbH, 2019) Stieger, B.; Spindler, G.; Van Pinxteren, D.; Grüner, A.; Wallasch, M.; Herrmann, H.
    A method is presented to quantify the lowmolecular- weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5 ngm3 for malonate and 17.4 ngm3 for glutarate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2 D0.95-0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306 ngm3 for acetic acid, followed by formic (199 ngm3), propionic (83 ngm3), pyruvic (76 ngm3), butyric (34 ngm3) and glycolic acid (32 ngm3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30 ngm3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source.
  • Item
    Few-femtosecond passage of conical intersections in the benzene cation
    ([London] : Nature Publishing Group UK, 2017) Galbraith, M.C.E.; Scheit, S.; Golubev, N.V.; Reitsma, G.; Zhavoronkov, N.; Despré, V.; Lépine, F.; Kuleff, A.I.; Vrakking, M.J.J.; Kornilov, O.; Köppel, H.; Mikosch, J.
    Observing the crucial first few femtoseconds of photochemical reactions requires tools typically not available in the femtochemistry toolkit. Such dynamics are now within reach with the instruments provided by attosecond science. Here, we apply experimental and theoretical methods to assess the ultrafast nonadiabatic vibronic processes in a prototypical complex system - the excited benzene cation. We use few-femtosecond duration extreme ultraviolet and visible/near-infrared laser pulses to prepare and probe excited cationic states and observe two relaxation timescales of 11 ± 3 fs and 110 ± 20 fs. These are interpreted in terms of population transfer via two sequential conical intersections. The experimental results are quantitatively compared with state-of-the-art multi-configuration time-dependent Hartree calculations showing convincing agreement in the timescales. By characterising one of the fastest internal conversion processes studied to date, we enter an extreme regime of ultrafast molecular dynamics, paving the way to tracking and controlling purely electronic dynamics in complex molecules.