Search Results

Now showing 1 - 10 of 24
  • Item
    Open-access platform to synthesize knowledge of ape conservation across sites
    (New York, NY [u.a.] : Wiley-Liss, 2020-11-10) Heinicke, Stefanie; Ordaz‐Németh, Isabel; Junker, Jessica; Bachmann, Mona E.; Marrocoli, Sergio; Wessling, Erin G.; Byler, Dirck; Cheyne, Susan M.; Desmond, Jenny; Dowd, Dervla; Fitzgerald, Maegan; Fourrier, Marc; Goedmakers, Annemarie; Hernandez‐Aguilar, R. Adriana; Hillers, Annika; Hockings, Kimberley J.; Jones, Sorrel; Kaiser, Michael; Koops, Kathelijne; Lapuente, Juan M.; Maisels, Fiona; Riedel, Julia; Terrade, Emilien; Tweh, Clement G.; Vergnes, Virginie; Vogt, Tina; Williamson, Elizabeth A.; Kühl, Hjalmar S.
    Despite the large body of literature on ape conservation, much of the data needed for evidence-based conservation decision-making is still not readily accessible and standardized, rendering cross-site comparison difficult. To support knowledge synthesis and to complement the IUCN SSC Ape Populations, Environments and Surveys database, we created the A.P.E.S. Wiki (https://apeswiki.eva.mpg.de), an open-access platform providing site-level information on ape conservation status and context. The aim of this Wiki is to provide information and data about geographical ape locations, to curate information on individuals and organizations active in ape research and conservation, and to act as a tool to support collaboration between conservation practitioners, scientists, and other stakeholders. To illustrate the process and benefits of knowledge synthesis, we used the momentum of the update of the conservation action plan for western chimpanzees (Pan troglodytes verus) and began with this critically endangered taxon. First, we gathered information on 59 sites in West Africa from scientific publications, reports, and online sources. Information was compiled in a standardized format and can thus be summarized using a web scraping approach. We then asked experts working at those sites to review and complement the information (20 sites have been reviewed to date). We demonstrate the utility of the information available through the Wiki, for example, for studying species distribution. Importantly, as an open-access platform and based on the well-known wiki layout, the A.P.E.S. Wiki can contribute to direct and interactive information sharing and promote the efforts invested by the ape research and conservation community. The Section on Great Apes and the Section on Small Apes of the IUCN SSC Primate Specialist Group will guide and support the expansion of the platform to all small and great ape taxa. Similar collaborative efforts can contribute to extending knowledge synthesis to all nonhuman primate species.
  • Item
    Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling
    (Cambridge : RSC Publ., 2016) Lee, Juhan; Krüner, Benjamin; Tolosa, Aura; Sathyamoorthi, Sethuraman; Kim, Daekyu; Choudhury, Soumyadip; Seo, Kum-Hee; Presser, Volker
    We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg−1, 30 W h L−1) and a maximum power of up to 1.5 kW kg−1 (600 W L−1, 250 W m−2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.
  • Item
    Road to glory or highway to hell? Global road access and climate change mitigation
    (Bristol : IOP Publ., 2020) Wenz, Leonie; Weddige, Ulf; Jakob, Michael; Steckel, Jan Christoph
    Transportation infrastructure is considered a key factor for economic development and poverty alleviation. The United Nations have explicitly included the provision of transport infrastructure access, e.g. through all-season road access, in their Sustainable Development Goal agenda (SDGs, target 9.1). Yet, little is known about the number of people lacking access to roads worldwide, the costs of closing existing access gaps and the implications of additional roads for other sustainability concerns such as climate change mitigation (SDG-13). Here we quantify, for 250 countries and territories, the percentage of population without road access in 2 km. We find that infrastructure investments required to provide quasi-universal road access are about USD 3 trillion. We estimate that the associated cumulative CO2 emissions from construction work and additional traffic until the end of the century amount to roughly 16 Gt. Our geographically explicit global analysis provides a starting point for refined regional studies and for the quantification of further environmental and social implications of SDG-9.1.
  • Item
    Social media reveals consistently disproportionate tourism pressure on a threatened marine vertebrate
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Papafitsoros, K.; Panagopoulou, A.; Schofield, G.
    Establishing how wildlife viewing pressure is distributed across individual animals within a population can inform the management of this activity, and ensure targeted individuals or groups are sufficiently protected. Here, we used social media data to quantify whether tourism pressure varies in a loggerhead sea turtle Caretta caretta population and elucidate the potential implications. Laganas Bay (Zakynthos, Greece) supports both breeding (migratory, and hence transient) and foraging (resident) turtles, with turtle viewing representing a major component of the tourism industry. Social media entries spanning two seasons (April to November, 2018 and 2019) were evaluated, and turtles were identified via photo-identification. For the 2 years, 1684 and 2105 entries of 139 and 122 unique turtles were obtained from viewings, respectively (boats and underwater combined). However, while residents represented less than one-third of uniquely identified turtles, they represented 81.9 and 87.9% of all entries. Even when the seasonal breeding population was present (May to July), residents represented more than 60% of entries. Notably, the same small number of residents (<10), mostly males, were consistently viewed in both years; however, different individuals were targeted by boats versus underwater. Thus, turtles appear to remain in the area despite high viewing intensity, possibly indicating low disturbance. However, photo-identification records revealed a high risk of propeller and boat strike to residents (30%) leading to trauma and mortality. To reduce this threat, we recommend the compulsory use of propeller guards for all boats, compliance with speed regulations and the creation of temporary ‘refuge’ zones for resident animals at viewing hotspots, with these suggestions likely being relevant for other wildlife with similar population dynamics. In conclusion, social media represents a useful tool for monitoring individuals at a population scale, evaluating the pressure under which they are placed, and providing sufficient data to refine wildlife viewing guidelines and/or zoning. © 2020 The Authors. Animal Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London
  • Item
    Dynamic cooling strategy based on individual animal response mitigated heat stress in dairy cows
    (Amsterdam : Elsevier, 2020) Levit, H.; Pinto, S.; Amon, T.; Gershon, E.; Kleinjan-Elazary, A.; Bloch, V.; Ben Meir, Y.A.; Portnik, Y.; Jacoby, S.; Arnin, A.; Miron, J.; Halachmi, I.
    Technological progress enables individual cow's temperatures to be measured in real time, using a bolus sensor inserted into the rumen (reticulorumen). However, current cooling systems often work at a constant schedule based on the ambient temperature and not on monitoring the animal itself. This study hypothesized that tailoring the cooling management to the cow's thermal reaction can mitigate heat stress. We propose a dynamic cooling system based on in vivo temperature sensors (boluses). Thus, cooling can be activated as needed and is thus most efficacious. A total of 30 lactating cows were randomly assigned to one of two groups; the groups received two different evaporative cooling regimes. A control group received cooling sessions on a preset time-based schedule, the method commonly used in farms; and an experimental group, which received the sensor-based (SB) cooling regime. Sensor-based was changed weekly according to the cow's reaction, as reflected in the changes in body temperatures from the previous week, as measured by reticulorumen boluses. The two treatment groups of cows had similar milk yields (44.7 kg/d), but those in the experimental group had higher milk fat (3.65 vs 3.43%), higher milk protein (3.23 vs 3.13%), higher energy corrected milk (ECM, 42.84 vs 41.48 kg/d), higher fat corrected milk 4%; (42.76 vs 41.34 kg/d), and shorter heat stress duration (5.03 vs 9.46 h/day) comparing to the control. Dry matter intake was higher in the experimental group. Daily visits to the feed trough were less frequent, with each visit lasting longer. The sensor-based cooling regime may be an effective tool to detect and ease heat stress in high-producing dairy cows during transitional seasons when heat load can become severe in arid and semi-arid zones.
  • Item
    Opinion paper : Measuring livestock robustness and resilience : are we on the right track?
    (Amsterdam : Elsevier, 2019) Llonch, P.; Hoffmann, G.; Bodas, R.; Mirbach, D.; Verwer, C.; Haskell, M.J.
    [No abstract available]
  • Item
    Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems
    (Bristol : IOP Publ., 2020) Ito, Akihiko; Reyer, Christopher P. O.; Gädeke, Anne; Ciais, Philippe; Chang, Jinfeng; Chen, Min; François, Louis; Forrest, Matthew; Hickler, Thomas; Ostberg, Sebastian; Shi, Hao; Thiery, Wim; Tian, Hanqin
    Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with the less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.
  • Item
    The world’s growing municipal solid waste: trends and impacts
    (Bristol : IOP Publ., 2020) Chen, David Meng-Chuen; Bodirsky, Benjamin Leon; Krueger, Tobias; Mishra, Abhijeet; Popp, Alexander
    Global municipal waste production causes multiple environmental impacts, including greenhouse gas emissions, ocean plastic accumulation, and nitrogen pollution. However, estimates of both past and future development of waste and pollution are scarce. We apply compositional Bayesian regression to produce the first estimates of past and future (1965–2100) waste generation disaggregated by composition and treatment, along with resultant environmental impacts, for every country. We find that total wastes grow at declining speed with economic development, and that global waste generation has increased from 635 Mt in 1965 to 1999 Mt in 2015 and reaches 3539 Mt by 2050 (median values, middle-of-the-road scenario). From 2015 to 2050, the global share of organic waste declines from 47% to 39%, while all other waste type shares increase, especially paper. The share of waste treated in dumps declines from 28% to 18%, and more sustainable recycling, composting, and energy recovery treatments increase. Despite these increases, we estimate environmental loads to continue increasing in the future, although yearly plastic waste input into the oceans has reached a peak. Waste production does not appear to follow the environmental Kuznets curve, and current projections do not meet UN SDGs for waste reduction. Our study shows that a continuation of current trends and improvements is insufficient to reduce pressures on natural systems and achieve a circular economy. Relative to 2015, the amount of recycled waste would need to increase from 363 Mt to 740 Mt by 2030 to begin reducing unsustainable waste generation, compared to 519 Mt currently projected.
  • Item
    What are the social outcomes of climate policies? A systematic map and review of the ex-post literature
    (Bristol : IOP Publ., 2020) Lamb, William F.; Antal, Miklós; Bohnenberger, Katharina; Brand-Correa, Lina I.; Müller-Hansen, Finn; Jakob, Michael; Minx, Jan C.; Raiser, Kilian; Williams, Laurence; Sovacool, Benjamin K.
    It is critical to ensure climate and energy policies are just, equitable and beneficial for communities, both to sustain public support for decarbonisation and address multifaceted societal challenges. Our objective in this article is to examine the diverse social outcomes that have resulted from climate policies, in varying contexts worldwide, over the past few decades. We review 203 ex-post climate policy assessments that analyse social outcomes in the literature. We systematically and comprehensively map out this work, identifying articles on carbon, energy and transport taxes, feed-in-tariffs, subsidies, direct procurement policies, large renewable deployment projects, and other regulatory and market-based interventions. We code each article in terms of their studied social outcomes and effects, with a focus on electricity access, energy affordability, community cohesion, employment, distributional and equity issues, livelihoods and poverty, procedural justice, subjective well-being and drudgery. Our analysis finds that climate and energy policies often fall short of delivering positive social outcomes. Nonetheless, across country contexts and policy types there are manifold examples of climate policymaking that does deliver on both social and climate goals. This requires attending to distributive and procedural justice in policy design, and making use of appropriate mechanisms to ensure that policy costs and benefits are fairly shared. We emphasize the need to further advance ex-post policy assessments and learn about what policies work for a just transition.
  • Item
    The emission benefits of European integration
    (Bristol : IOP Publ., 2019) Costa, Luís; Moreau, Vincent
    Simulating the implications of Brexit on the UK's emissions embodied in trade with a multi-region input–output table exposes the benefits of European integration. Under 2014 trade volumes, technologies and energy mixes, a hard Brexit—reverting to a trade pattern between the UK and the EU prior to the European Internal Market (EIM)—would imply a rise of about 0.215Gt of CO2eq in the UK's emissions embodied in imports. This is equivalent to a 38% rise in UK's imported emissions in 2014 and roughly equal to the territorial emissions of the Netherlands in 2017. Substituting imports from the EU with those from the Rest of the World (RoW), under the same conditions, implies adding 0.35 kg of CO2eq, on average, to each dollar of activity imported in the UK. This underlines the emission benefits of an integrated European market abiding to common environmental standards and climate policies. Filling the gap in imports lost from the UK to the EU by stepping up production within the EIM would result in an extra 0.012Gt of CO2eq, a rather small increase when compared to the additional emissions in the UK's imports following Brexit. Should the EU reallocate the lost imports from the UK to the RoW, a total of 0.128Gt of CO2eq would be added to the EIM imports. This exposes the environmental benefits in terms of emissions in keeping UK trade closely linked to the EU and the important role that Single Member States can play indirectly on EU's import emissions. In terms of emissions embodied in trade, the sum of the EU market is, paradoxically and for the better, less than the sum of its individual parts.