Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Road to glory or highway to hell? Global road access and climate change mitigation

2020, Wenz, Leonie, Weddige, Ulf, Jakob, Michael, Steckel, Jan Christoph

Transportation infrastructure is considered a key factor for economic development and poverty alleviation. The United Nations have explicitly included the provision of transport infrastructure access, e.g. through all-season road access, in their Sustainable Development Goal agenda (SDGs, target 9.1). Yet, little is known about the number of people lacking access to roads worldwide, the costs of closing existing access gaps and the implications of additional roads for other sustainability concerns such as climate change mitigation (SDG-13). Here we quantify, for 250 countries and territories, the percentage of population without road access in 2 km. We find that infrastructure investments required to provide quasi-universal road access are about USD 3 trillion. We estimate that the associated cumulative CO2 emissions from construction work and additional traffic until the end of the century amount to roughly 16 Gt. Our geographically explicit global analysis provides a starting point for refined regional studies and for the quantification of further environmental and social implications of SDG-9.1.

Loading...
Thumbnail Image
Item

Investigating afforestation and bioenergy CCS as climate change mitigation strategies

2014, Humpenöder, Florian, Popp, Alexander, Dietrich, Jan Philip, Klein, David, Lotze-Campen, Hermann, Bonsch, Markus, Bodirsky, Benjamin Leon, Weindl, Isabelle, Stevanovic, Miodrag, Müller, Christoph

The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600–700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

Loading...
Thumbnail Image
Item

Peatland protection and restoration are key for climate change mitigation

2020, Humpenöder, Florian, Karstens, Kristine, Lotze-Campen, Hermann, Leifeld, Jens, Menichetti, Lorenzo, Barthelmes, Alexandra, Popp, Alexander

Peatlands cover only about 3% the global land area, but store about twice as much carbon as global forest biomass. If intact peatlands are drained for agriculture or other human uses, peat oxidation can result in considerable CO2 emissions and other greenhouse gases (GHG) for decades or even centuries. Despite their importance, emissions from degraded peatlands have so far not been included explicitly in mitigation pathways compatible with the Paris Agreement. Such pathways include land-demanding mitigation options like bioenergy or afforestation with substantial consequences for the land system. Therefore, besides GHG emissions owing to the historic conversion of intact peatlands, the increased demand for land in current mitigation pathways could result in drainage of presently intact peatlands, e.g. for bioenergy production. Here, we present the first quantitative model-based projections of future peatland dynamics and associated GHG emissions in the context of a 2 °C mitigation pathway. Our spatially explicit land-use modelling approach with global coverage simultaneously accounts for future food demand, based on population and income projections, and land-based mitigation measures. Without dedicated peatland policy and even in the case of peatland protection, our results indicate that the land system would remain a net source of CO2 throughout the 21st century. This result is in contrast to the outcome of current mitigation pathways, in which the land system turns into a net carbon sink by 2100. However, our results indicate that it is possible to reconcile land use and GHG emissions in mitigation pathways through a peatland protection and restoration policy. According to our results, the land system would turn into a global net carbon sink by 2100, as projected by current mitigation pathways, if about 60% of present-day degraded peatlands would be rewetted in the coming decades, next to the protection of intact peatlands.

Loading...
Thumbnail Image
Item

National contributions for decarbonizing the world economy in line with the G7 agreement

2016, du Pont, Yann Robiou, Jeffery, M. Louise, Gütschow, Johannes, Christoff, Peter, Meinshausen, Malte

In June 2015, the G7 agreed to two global mitigation goals: 'a decarbonization of the global economy over the course of this century' and 'the upper end of the latest Intergovernmental Panel on Climate Change (IPCC) recommendation of 40%–70% reductions by 2050 compared to 2010'. These IPCC recommendations aim to preserve a likely (>66%) chance of limiting global warming to 2 °C but are not necessarily consistent with the stronger ambition of the subsequent Paris Agreement of 'holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels'. The G7 did not specify global or national emissions scenarios consistent with its own agreement. Here we identify global cost-optimal emissions scenarios from Integrated Assessment Models that match the G7 agreement. These scenarios have global 2030 emissions targets of 11%–43% below 2010, global net negative CO2 emissions starting between 2056 and 2080, and some exhibit net negative greenhouse gas emissions from 2080 onwards. We allocate emissions from these global scenarios to countries according to five equity approaches representative of the five equity categories presented in the Fifth Assessment Report of the IPCC (IPCCAR5): 'capability', 'equality', 'responsibility-capability-need', 'equal cumulative per capita' and 'staged approaches'. Our results show that G7 members' Intended Nationally Determined Contribution (INDCs) mitigation targets are in line with a grandfathering approach but lack ambition to meet various visions of climate justice. The INDCs of China and Russia fall short of meeting the requirements of any allocation approach. Depending on how their INDCs are evaluated, the INDCs of India and Brazil can match some equity approaches evaluated in this study.

Loading...
Thumbnail Image
Item

Economic mitigation challenges: How further delay closes the door for achieving climate targets

2013, Luderer, Gunnar, Pietzcker, Robert C., Bertram, Christoph, Kriegler, Elmar, Meinshausen, Malte, Edenhofer, Ottmar

While the international community aims to limit global warming to below 2 ° C to prevent dangerous climate change, little progress has been made towards a global climate agreement to implement the emissions reductions required to reach this target. We use an integrated energy–economy–climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges. With comprehensive emissions reductions starting after 2015 and full technology availability we estimate that maximum 21st century warming may still be limited below 2 ° C with a likely probability and at moderate economic impacts. Achievable temperature targets rise by up to ~0.4 ° C if the implementation of comprehensive climate policies is delayed by another 15 years, chiefly because of transitional economic impacts. If carbon capture and storage (CCS) is unavailable, the lower limit of achievable targets rises by up to ~0.3 ° C. Our results show that progress in international climate negotiations within this decade is imperative to keep the 2 ° C target within reach.

Loading...
Thumbnail Image
Item

The role of capital costs in decarbonizing the electricity sector

2016, Hirth, Lion, Steckel, Jan Christoph

Low-carbon electricity generation, i.e. renewable energy, nuclear power and carbon capture and storage, is more capital intensive than electricity generation through carbon emitting fossil fuel power stations. High capital costs, expressed as high weighted average cost of capital (WACC), thus tend to encourage the use of fossil fuels. To achieve the same degree of decarbonization, countries with high capital costs therefore need to impose a higher price on carbon emissions than countries with low capital costs. This is particularly relevant for developing and emerging economies, where capital costs tend to be higher than in rich countries. In this paper we quantitatively evaluate how high capital costs impact the transformation of the energy system under climate policy, applying a numerical techno-economic model of the power system. We find that high capital costs can significantly reduce the effectiveness of carbon prices: if carbon emissions are priced at USD 50 per ton and the WACC is 3%, the cost-optimal electricity mix comprises 40% renewable energy. At the same carbon price and a WACC of 15%, the cost-optimal mix comprises almost no renewable energy. At 15% WACC, there is no significant emission mitigation with carbon pricing up to USD 50 per ton, but at 3% WACC and the same carbon price, emissions are reduced by almost half. These results have implications for climate policy; carbon pricing might need to be combined with policies to reduce capital costs of low-carbon options in order to decarbonize power systems.

Loading...
Thumbnail Image
Item

The global economic long-term potential of modern biomass in a climate-constrained world

2014, Klein, David, Humpenöder, Florian, Bauer, Nico, Dietrich, Jan Philipp, Popp, Alexander, Bodirsky, Benjamin Leon, Bonsch, Markus, Lotze-Campen, Hermann

Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at $5 GJ−1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by $5 GJ−1 in 2055 and by $10 GJ−1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha−1 yr−1 with and without tax.

Loading...
Thumbnail Image
Item

What is important for achieving 2 °C? UNFCCC and IPCC expert perceptions on obstacles and response options for climate change mitigation

2020, Kornek, Ulrike, Flachsland, Christian, Kardish, Chris, Levi, Sebastian, Edenhofer, Ottmar

Global mitigation efforts remain insufficient to limit the global temperature increase to well below 2 °C. While a growing academic literature analyzes this problem, perceptions of which obstacles inhibit goal attainment and which responses might be most effective seem to differ widely. This makes prioritization and agreement on the way forward difficult. To inform prioritization in global climate policy and research agendas, we present quantitative data on how 917 experts from the IPCC and the UNFCCC perceive the importance of different obstacles and response options for achieving 2 °C. On average, respondents consider opposition from special interest groups the most important obstacle and technological R&D the most important response. Our survey also finds that the majority of experts perceives a wide range of issues as important, supporting an agenda that is inclusive in terms of coverage. Average importance ratings differ between experts from the Global North and South, suggesting that balanced representation in global fora and regionally differentiated agendas are important. In particular, opposition from special interest groups is a top priority among experts from North America, Europe and Oceania. Investigating the drivers of individual importance ratings, we find little difference between experts from the IPCC and the UNFCCC, while expert's perceptions correlate with their academic training and their national scientific, regulatory, and financial contexts.

Loading...
Thumbnail Image
Item

Negative emissions—Part 2: Costs, potentials and side effects

2018, Fuss, Sabine, Lamb, William F., Callaghan, Max W., Hilaire, Jérôme, Creutzig, Felix, Amann, Thorben, Beringer, Tim, de Oliveira Garcia, Wagner, Hartmann, Jens, Khanna, Tarun, Luderer, Gunnar, Nemet, Gregory F., Rogelj, Joeri, Smith, Pete, Vicente Vicente, José Luis, Wilcox, Jennifer, del Mar Zamora Dominguez, Maria, Minx, Jan C.

The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO2 yr−1 for afforestation and reforestation, 0.5–5 GtCO2 yr−1 for BECCS, 0.5–2 GtCO2 yr−1 for biochar, 2–4 GtCO2 yr−1 for enhanced weathering, 0.5–5 GtCO2 yr−1 for DACCS, and up to 5 GtCO2 yr−1 for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.