Search Results

Now showing 1 - 4 of 4
  • Item
    Towards low-temperature processing of efficient γ-CsPbI3 perovskite solar cells
    (London [u.a.] : RSC, 2023) Zhang, Zongbao; Ji, Ran; Hofstetter, Yvonne J.; Deconinck, Marielle; Brunner, Julius; Li, Yanxiu; An, Qingzhi; Vaynzof, Yana
    Inorganic cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (∼1.73 eV), well-suited for tandem device applications. However, achieving high-performance photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method for the fabrication of high-efficiency and stable γ-CsPbI3 PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of γ-CsPbI3, while excess Pb(OAc)2 can further stabilize the γ-phase of CsPbI3 perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI3 films fabricated by the new method. By optimizing the hole transport layer of CsPbI3 inverted architecture solar cells, we demonstrate efficiencies of up to 16.6%, surpassing previous reports examining γ-CsPbI3 in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and under dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 in stabilizing γ-CsPbI3 PSCs.
  • Item
    Topological boundaries between helical domains as a nucleation source of skyrmions in the bulk cubic helimagnet Cu2OSeO3
    (College Park, MD : APS, 2022) Leonov, A.O.; Pappas, C.
    Cu2OSeO3 represents a unique example in the family of B20 cubic helimagnets with a tilted spiral and a low-temperature skyrmion phase arising for magnetic fields applied along the easy crystallographic (100) axes. Although the stabilization mechanism of these phases can be accounted for by cubic magnetic anisotropy, the skyrmion nucleation process is still an open question, since the stability region of the skyrmion phase displays strongly hysteretic behavior with different phase boundaries for increasing and decreasing magnetic fields. Here, we address this important point using micromagnetic simulations and come to the conclusion that skyrmion nucleation is underpinned by the reorientation of spiral domains occurring near the critical magnetic fields of the phase diagrams: HC1, the critical field of the transition between the helical and conical/tiled spiral phase, and HC2, the critical field between the conical/tiled spiral and the homogenous phase. By studying a wide variety of cases we show that domain walls may have a 3D structure. Moreover, they can carry a finite topological charge stemming from half-skyrmions (merons) also permitting along-the-field and perpendicular-to-the-field orientation. Thus, domain walls may be envisioned as nucleation source of skyrmions that can form thermodynamically stable and metastable lattices as well as skyrmion networks with misaligned skyrmion tubes. The results of numerical simulations are discussed in view of recent experimental data on chiral magnets, in particular, for the bulk cubic helimagnet Cu2OSeO3.
  • Item
    Fate of density waves in the presence of a higher-order van Hove singularity
    (College Park, MD : APS, 2023) Zervou, Alkistis; Efremov, Dmitry V.; Betouras, Joseph J.
    Topological transitions in electronic band structures, resulting in van Hove singularities in the density of states, can considerably affect various types of orderings in quantum materials. Regular topological transitions (of neck formation or collapse) lead to a logarithmic divergence of the electronic density of states (DOS) as a function of energy in two dimensions. In addition to the regular van Hove singularities, there are higher-order van Hove singularities (HOVHS) with a power-law divergence in DOS. By employing renormalization group techniques, we study the fate of a spin-density wave phase formed by nested parts of the Fermi surface, when a HOVHS appears in parallel. We find that the phase formation can be boosted by the presence of the singularity, with the critical temperature increasing by orders of magnitude, under certain conditions. We discuss possible applications of our findings to a range of quantum materials such as Sr3Ru2O7, Sr2RuO4, and transition metal dichalcogenides.
  • Item
    Phononic-magnetic dichotomy of the thermal Hall effect in the Kitaev material Na2 Co2 TeO6
    (College Park, MD : APS, 2023) Gillig, Matthias; Hong, Xiaochen; Wellm, Christoph; Kataev, Vladislav; Yao, Weiliang; Li, Yuan; Büchner, Bernd; Hess, Christian
    The quest for a half-quantized thermal Hall effect of a Kitaev system represents an important tool to probe topological edge currents of emergent Majorana fermions. Pertinent experimental findings for α-RuCl3 are, however, strongly debated, and it has been argued that the thermal Hall signal stems from phonons or magnons rather than from Majorana fermions. Here, we investigate the thermal Hall effect of the Kitaev candidate material Na2Co2TeO6, and we show that the measured signal emerges from at least two components, phonons and magnetic excitations. This dichotomy results from our discovery that the longitudinal and transversal heat conductivities share clear phononic signatures, while the transversal signal changes sign upon entering the low-temperature, magnetically ordered phase. Our results demonstrate that uncovering a genuinely quantized magnetic thermal Hall effect in Kitaev topological quantum spin liquids such as α-RuCl3 and Na2Co2TeO6 requires disentangling phonon vs magnetic contributions, including potentially fractionalized excitations such as the expected Majorana fermions.