Search Results

Now showing 1 - 10 of 91
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Photoluminescence Mapping over Laser Pulse Fluence and Repetition Rate as a Fingerprint of Charge and Defect Dynamics in Perovskites
    (Weinheim : Wiley-VCH, 2023) Rao, Shraddha M.; Kiligaridis, Alexander; Yangui, Aymen; An, Qingzhi; Vaynzof, Yana; Scheblykin, Ivan G.
    Defects in metal halide perovskites (MHP) are photosensitive, making the observer effect unavoidable when laser spectroscopy methods are applied. Photoluminescence (PL) bleaching and enhancement under light soaking and recovery in dark are examples of the transient phenomena that are consequent to the creation and healing of defects. Depending on the initial sample composition, environment, and other factors, the defect nature and evolution can strongly vary, making spectroscopic data analysis prone to misinterpretations. Herein, the use of an automatically acquired dependence of PL quantum yield (PLQY) on the laser pulse repetition rate and pulse fluence as a unique fingerprint of both charge carrier dynamics and defect evolution is demonstrated. A simple visual comparison of such fingerprints allows for assessment of similarities and differences between MHP samples. The study illustrates this by examining methylammonium lead triiodide (MAPbI3) films with altered stoichiometry that just after preparation showed very pronounced defect dynamics at time scale from milliseconds to seconds, clearly distorting the PLQY fingerprint. Upon weeks of storage, the sample fingerprints evolve toward the standard stoichiometric MAPbI3 in terms of both charge carrier dynamics and defect stability. Automatic PLQY mapping can be used as a universal method for assessment of perovskite sample quality.
  • Item
    Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects
    (Basel : MDPI, 2022) Oswald, Steffen
    Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.
  • Item
    Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber
    (Weinheim : Wiley-VCH, 2023) Zhang, Zongbao; Ji, Ran; Jia, Xiangkun; Wang, Shu‐Jen; Deconinck, Marielle; Siliavka, Elena; Vaynzof, Yana
    Metal halide perovskites are of great interest for application in semitransparent solar cells due to their tunable bandgap and high performance. However, fabricating high-efficiency perovskite semitransparent devices with high average visible transmittance (AVT) is challenging because of their high absorption coefficient. Here, a co-evaporation process is adopted to fabricate ultra-thin CsPbI3 perovskite films. The smooth surface and orientated crystal growth of the evaporated perovskite films make it possible to achieve 10 nm thin films with compact and continuous morphology without pinholes. When integrated into a p-i-n device structure of glass/ITO/PTAA/perovskite/PCBM/BCP/Al/Ag with an optimized transparent electrode, these ultra-thin layers result in an impressive open-circuit voltage (VOC) of 1.08 V and a fill factor (FF) of 80%. Consequently, a power conversion efficiency (PCE) of 3.6% with an AVT above 50% is demonstrated, which is the first report for a perovskite device of a 10 nm active layer thickness with high VOC, FF and AVT. These findings demonstrate that deposition by thermal evaporation makes it possible to form compact ultra-thin perovskite films, which are of great interest for future smart windows, light-emitting diodes, and tandem device applications.
  • Item
    Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty
    (Amsterdam [u.a.] : Elsevier Science, 2023) Chernyavsky, Dmitry; Kononenko, Denys Y.; Han, Jun Hee; Kim, Hwi Jun; van den Brink, Jeroen; Kosiba, Konrad
    Additive manufacturing (AM) is known for versatile fabrication of complex parts, while also allowing the synthesis of materials with desired microstructures and resulting properties. These benefits come at a cost: process control to manufacture parts within given specifications is very challenging due to the relevance of a large number of processing parameters. Efficient predictive machine learning (ML) models trained on small datasets, can minimize this cost. They also allow to assess the quality of the dataset inclusive of uncertainty. This is important in order for additively manufactured parts to meet property specifications not only on average, but also within a given variance or uncertainty. Here, we demonstrate this strategy by developing a heteroscedastic Gaussian process (HGP) model, from a dataset based on laser powder bed fusion of a glass-forming alloy at varying processing parameters. Using amorphicity as the microstructural descriptor, we train the model on our Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) alloy dataset. The HGP model not only accurately predicts the mean value of amorphicity, but also provides the respective uncertainty. The quantification of the aleatoric and epistemic uncertainty contributions allows to assess intrinsic inaccuracies of the dataset, as well as identify underlying physical phenomena. This HGP model approach enables to systematically improve ML-driven AM processes.
  • Item
    Fabrication of four-level hierarchical topographies through the combination of LIPSS and direct laser interference pattering on near-beta titanium alloy
    (New York, NY [u.a.] : Elsevier, 2022) Schell, Frederic; Alamri, Sabri; Hariharan, Avinash; Gebert, Annett; Lasagni, Andrés Fabián; Kunze, Tim
    Complex repetitive periodic surface patterns were produced on a near-beta Ti-13Nb-13Zr alloy, using two-beam Direct Laser Interference Patterning (DLIP) employing a picosecond-pulsed laser source with wavelengths of 355 nm, 532 nm and 1064 nm. Different types of Laser-induced periodic surface structures (LIPSS) are produced, including low and high spatial frequency LIPSS, which are observed frequently on top of the line-like DLIP microstructures, as well as quasi-periodic microstructures with periods greater than the laser wavelength. The feature size of the fabricated LIPSS features could be tuned as function of the utilized laser process parameters.
  • Item
    Electron Beam-Induced Reduction of Cuprite
    (Basel : MDPI, 2022) Siudzinska, Anna; Gorantla, Sandeep M.; Serafinczuk, Jaroslaw; Kudrawiec, Robert; Hommel, Detlef; Bachmatiuk, Alicja
    Cu-based materials are used in various industries, such as electronics, power generation, and catalysis. In particular, monolayered cuprous oxide (Cu2O) has potential applications in solar cells owing to its favorable electronic and magnetic properties. Atomically thin Cu2O samples derived from bulk cuprite were characterized by high-resolution transmission electron microscopy (HRTEM). Two voltages, 80 kV and 300 kV, were explored for in situ observations of the samples. The optimum electron beam parameters (300 kV, low-current beam) were used to prevent beam damage. The growth of novel crystal structures, identified as Cu, was observed in the samples exposed to isopropanol (IPA) and high temperatures. It is proposed that the exposure of the copper (I) oxide samples to IPA and temperature causes material nucleation, whereas the consequent exposure via e-beams generated from the electron beam promotes the growth of the nanosized Cu crystals.
  • Item
    Investigating the Static Recrystallization Behavior of 22MnB5 Manganese–Boron Steel through Stress Relaxation Analysis
    (Basel : MDPI, 2023) Birnbaum, Peter; Pilz, Stefan; Neufeld, Kai; Kunke, Andreas
    A constitutive model was developed to characterize the static recrystallization (SRX) and evolution of the grain size of the industrially relevant press-hardening steel, 22MnB5, subsequent to the hot forming of sheet metal. Isothermal stress relaxation tests were conducted using the BAEHR 805 A/D thermomechanical simulator, encompassing a temperature range of 950 to 1050 °C, prestrain levels ranging from 0.01 to 0.1, and strain rates spanning from 0.01 to 0.8 s−1. The results obtained from the isothermal stress relaxation tests facilitated the formulation of an Avrami equation-based model, which aptly describes the kinetics of SRX in relation to the temperature, prestrain, and strain rate. Notably, an increase in temperature led to accelerated recrystallization kinetics, signifying temperature-dependent behavior. When the temperature increased from 950 to 1050 °C, the recrystallization time was reduced to approximately one-third. Additionally, the prestrain exhibited a positive influence on the acceleration of SRX kinetics. A quintupling of the prestrain from 0.01 to 0.05 resulted in a reduction of the static recrystallization duration to approximately one-fifth. Among the parameters studied, the strain rate had the least impact on the SRX kinetics, as doubling the strain rate from 0.01 to 0.8 only resulted in a halving of the recrystallization duration. Moreover, an analysis of the microstructural evolution in response to the forming parameters was undertaken. While the grain-size investigation post-isothermal stress relaxation tests provided results in line with the SRX kinetics calculations, the observed effects were comparatively subdued. Furthermore, a comprehensive examination was conducted using electron backscatter diffraction (EBSD) analysis, aiming to explore the effects of specific stress relaxation states on the morphology of martensite. The findings reveal fully recrystallized globulitic microstructures, characterized by relatively minor differences among them.
  • Item
    Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures.
    (Basel : MDPI, 2023) Leonov, Andrey O.; Rößler, Ulrich K.
    Isolated chiral skyrmions are investigated within the phenomenological Dzyaloshinskii model near the ordering temperatures of quasi-two-dimensional chiral magnets with Cnv symmetry and three-dimensional cubic helimagnets. In the former case, isolated skyrmions (IS) perfectly blend into the homogeneously magnetized state. The interaction between these particle-like states, being repulsive in a broad low-temperature (LT) range, is found to switch into attraction at high temperatures (HT). This leads to a remarkable confinement effect: near the ordering temperature, skyrmions exist only as bound states. This is a consequence of the coupling between the magnitude and the angular part of the order parameter, which becomes pronounced at HT. The nascent conical state in bulk cubic helimagnets, on the contrary, is shown to shape skyrmion internal structure and to substantiate the attraction between them. Although the attracting skyrmion interaction in this case is explained by the reduction of the total pair energy due to the overlap of skyrmion shells, which are circular domain boundaries with the positive energy density formed with respect to the surrounding host phase, additional magnetization "ripples" at the skyrmion outskirt may lead to attraction also at larger length scales. The present work provides fundamental insights into the mechanism for complex mesophase formation near the ordering temperatures and constitutes a first step to explain the phenomenon of multifarious precursor effects in that temperature region.