Search Results

Now showing 1 - 2 of 2
  • Item
    Relationship between corrosion and nanoscale friction on a metallic glass
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2022) Ma, Haoran; Bennewitz, Roland
    Metallic glasses are promising materials for microdevices, although corrosion and friction limit their effectiveness and durability. We investigated nanoscale friction on a metallic glass in corrosive solutions after different periods of immersion time using atomic force microscopy to elucidate the influence of corrosion on nanoscale friction. The evolution of friction upon repeated scanning cycles on the corroded surfaces reveals a bilayer surface oxide film, of which the outer layer is removed by the scanning tip. The measurement of friction and adhesion allows one to compare the physicochemical processes of surface dissolution at the interface of the two layers. The findings contribute to the understanding of mechanical contacts with metallic glasses under corrosive conditions by exploring the interrelation of microscopic corrosion mechanisms and nanoscale friction.
  • Item
    Tactile perception of randomly rough surfaces
    (Berlin : Springer Nature, 2020) Sahli, Riad; Prot, Aubin; Wang, Anle; Müser, Martin H.; Piovarči, Michal; Didyk, Piotr; Bennewitz, Roland
    Most everyday surfaces are randomly rough and self-similar on sufficiently small scales. We investigated the tactile perception of randomly rough surfaces using 3D-printed samples, where the topographic structure and the statistical properties of scale-dependent roughness were varied independently. We found that the tactile perception of similarity between surfaces was dominated by the statistical micro-scale roughness rather than by their topographic resemblance. Participants were able to notice differences in the Hurst roughness exponent of 0.2, or a difference in surface curvature of 0.8 mm−1 for surfaces with curvatures between 1 and 3 mm−1. In contrast, visual perception of similarity between color-coded images of the surface height was dominated by their topographic resemblance. We conclude that vibration cues from roughness at the length scale of the finger ridge distance distract the participants from including the topography into the judgement of similarity. The interaction between surface asperities and fingertip skin led to higher friction for higher micro-scale roughness. Individual friction data allowed us to construct a psychometric curve which relates similarity decisions to differences in friction. Participants noticed differences in the friction coefficient as small as 0.035 for samples with friction coefficients between 0.34 and 0.45.