Search Results

Now showing 1 - 10 of 18
  • Item
    Graphene Q-switched Yb:KYW planar waveguide laser
    (New York, NY : American Inst. of Physics, 2015) Kim, Jun Wan; Young Choi, Sun; Aravazhi, Shanmugam; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Jun Ahn, Kwang; Yeom, Dong-Il; Rotermund, Fabian
    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.
  • Item
    Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses
    (Les Ulis : EDP Sciences, 2013) Rosenfeld, A.; Höhm, S.; Bonse, J.; Krüger, J.
    The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.
  • Item
    Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS
    (Bristol : Institute of Physics Publishing, 2014) McFarland, B.K.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Castagna, J.C.; Coffee, R.N.; Cryan, J.P.; Fang, L.; Farrell, J.P.; Feifel, R.; Gaffney, K.J.; Glownia, J.M.; Martinez, T.J.; Miyabe, S.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V.S.; Schorb, S.; Schultz, T.; Spector, L.S.; Swiggers, M.; Tarantelli, F.; Tenney, I.; Wang, S.; White, J.L.; White, W.; Gühr, M.
    Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.
  • Item
    Electron Population Dynamics in Optically Pumped Asymmetric Coupled Ge/SiGe Quantum Wells: Experiment and Models
    (Basel : MDPI, 2020) Ciano, Chiara; Virgilio, Michele; Bagolini, Luigi; Baldassarre, Leonetta; Rossetti, Andrea; Pashkin, Alexej; Helm, Manfred; Montanari, Michele; Persichetti, Luca; Di Gaspare, Luciana; Capellini, Giovanni; Paul, Douglas J.; Scalari, Giacomo; Faist, Jèrome; De Seta, Monica; Ortolani, Michele
    n-type doped Ge quantum wells with SiGe barriers represent a promising heterostructure system for the development of radiation emitters in the terahertz range such as electrically pumped quantum cascade lasers and optically pumped quantum fountain lasers. The nonpolar lattice of Ge and SiGe provides electron-phonon scattering rates that are one order of magnitude lower than polar GaAs. We have developed a self-consistent numerical energy-balance model based on a rate equation approach which includes inelastic and elastic inter-and intra-subband scattering events and takes into account a realistic two-dimensional electron gas distribution in all the subband states of the Ge/SiGe quantum wells by considering subband-dependent electronic temperatures and chemical potentials. This full-subband model is compared here to the standard discrete-energy-level model, in which the material parameters are limited to few input values (scattering rates and radiative cross sections). To provide an experimental case study, we have epitaxially grown samples consisting of two asymmetric coupled quantum wells forming a three-level system, which we optically pump with a free electron laser. The benchmark quantity selected for model testing purposes is the saturation intensity at the 1!3 intersubband transition. The numerical quantum model prediction is in reasonable agreement with the experiments and therefore outperforms the discrete-energy-level analytical model, of which the prediction of the saturation intensity is off by a factor 3. © 2019 by the authors.
  • Item
    43 W, 1.55 μm and 12.5 W, 3.1 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier
    (Washington, DC : Soc., 2018) Mero, Mark; Heiner, Zsuzsanna; Petrov, Valentin; Rottke, Horst; Branchi, Federico; Thomas, Gabrielle M.; Vrakking, Marc J. J.
    We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier. Two optically synchronized infrared output beams are simultaneously available: a 430 μJ, 51 fs, carrier-envelope phase stable beam at 1.55 μm and an angular-dispersion-compensated, 125 μJ, 73 fs beam at 3.1 μm.
  • Item
    Supercontinuum generation in a carbon disulfide core microstructured optical fiber
    (Washington, DC : Soc., 2021) Junaid, Saher; Bierlich, Joerg; Hartung, Alexander; Meyer, Tobias; Chemnitz, Mario; Schmidt, Markus A.
    We demonstrate supercontinuum generation in a liquid-core microstructured optical fiber using carbon disulfide as the core material. The fiber provides a specific dispersion landscape with a zero-dispersion wavelength approaching the telecommunication domain where the corresponding capillary-type counterpart shows unsuitable dispersion properties for soliton fission. The experiments were conducted using two pump lasers with different pulse duration (30 fs and 90 fs) giving rise to different non-instantaneous contributions of carbon disulfide in each case. The presented results demonstrate an extraordinary high conversion efficiency from pump to soliton and to dispersive wave, overall defining a platform that enables studying the impact of non-instantaneous responses on ultrafast soliton dynamics and coherence using straightforward pump lasers and diagnostics.
  • Item
    Sub-15-fs X-ray pump and X-ray probe experiment for the study of ultrafast magnetization dynamics in ferromagnetic alloys
    (Washington, DC : Soc., 2021) Liu, Xuan; Merhe, Alaaeldine; Jal, Emmanuelle; Delaunay, Renaud; Jarrier, Romain; Chardonnet, Valentin; Hennes, Marcel; Chiuzbaian, Sorin G.; Légaré, Katherine; Hennecke, Martin; Radu, Ilie; Von Korff Schmising, Clemens; Grunewald, Særen; Kuhlmann, Marion; Lüning, Jan; Vodungbo, Boris
    In this paper, we present a new setup for the measurement of element-specific ultrafast magnetization dynamics in ferromagnetic thin films with a sub-15-fs time resolution. Our experiment relies on a split and delay approach which allows us to fully exploit the shortest X-rays pulses delivered by X-ray Free Electrons Lasers (close to the attosecond range), in an X-ray pump – X-ray probe geometry. The setup performance is demonstrated by measuring the ultrafast elemental response of Ni and Fe during demagnetization of ferromagnetic Ni and Ni80Fe20 (Permalloy) samples upon resonant excitation at the corresponding absorption edges. The transient demagnetization process is measured in both reflection and transmission geometry using, respectively, the transverse magneto-optical Kerr effect (T-MOKE) and the Faraday effect as probing mechanisms.
  • Item
    The new ultra high-speed all-optical coherent streak-camera
    (Bristol : IOP Publ., 2015) Arkhipov, R.M.; Arkhipov, M.V.; Egorov, V.S.; Chekhonin, I.A.; Chekhonin, M.A.; Bagayev, S.N.
    In the present paper a new type of ultra high-speed all-optical coherent streak-camera was developed. It was shown that a thin resonant film (quantum dots or molecules) could radiate the angular sequence of delayed ultra-short pulses if a transverse spatial periodic distribution of the laser pump field amplitude has a triangle shape.
  • Item
    Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy
    (Melville, NY : AIP Publishing, 2017) Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark
    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.
  • Item
    Terahertz transient stimulated emission from doped silicon
    (Melville, NY : AIP Publishing, 2020) Pavlov, S.G.; Deßmann, N.; Pohl, A.; Zhukavin, R.K.; Klaassen, T.O.; Abrosimov, N.V.; Riemann, H.; Redlich, B.; Van Der Meer, A.F.G.; Ortega, J.-M.; Prazeres, R.; Orlova, E.E.; Muraviev, A.V.; Shastin, V.N.; Hübers, H.-W.
    Transient-type stimulated emission in the terahertz (THz) frequency range has been achieved from phosphorus doped silicon crystals under optical excitation by a few-picosecond-long pulses generated by the infrared free electron lasers FELIX and CLIO. The analysis of the lasing threshold and emission spectra indicates that the stimulated emission occurs due to combined population inversion based lasing and stimulated Raman scattering. Giant gain has been obtained in the optically pumped silicon due to large THz cross sections of intracenter impurity transitions and resonant intracenter electronic scattering. The transient-type emission is formed under conditions when the pump pulse intervals exceed significantly the photon lifetime in the laser resonator. © 2020 Author(s).