Search Results

Now showing 1 - 10 of 62
  • Item
    The usability of a pressure-indicating film to measure the teat load caused by a collapsing liner
    (Basel : MDPI, 2016) Demba, Susanne; Sabrina, Sabrina; Ammon, Christian; Rose-Meierhöfer, Sandra
    Prevention of damage to the teat and mastitis requires determination of the teat load caused by a collapsing liner. The aim of this study was to test a pressure-indicating film designed to measure the pressure between a collapsing liner and artificial teats. The Ultra Super Low and the Extreme Low pressure-indicating films were tested on two types of artificial teat. The experiments were performed with a conventional milking cluster equipped with round silicone liners. For each teat and film type, 30 repetitions were performed. Each repetition was performed with a new piece of film. Kruskal-Wallis tests were performed to detect differences between the pressure values for the different teats. The area of regions where pressure-indication color developed was calculated to determine the most suitable film type. Both film types measured the pressure applied to both artificial teats by the teat cup liner. Thus, the pressure-indicating films can be used to measure the pressure between a collapsing liner and an artificial teat. Based on the results of the present investigation, a pressure-indicating film with the measurement ranges of both film types combined would be an optimal tool to measure the overall pressure between an artificial teat and a collapsing liner.
  • Item
    Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion
    (Amsterdam : Elsevier, 2015) Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika
    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.
  • Item
    In-Situ Measurement of Fresh Produce Respiration Using a Modular Sensor-Based System
    (Basel : MDPI, 2020) Keshri, Nandita; Truppel, Ingo; Herppich, Werner B.; Geyer, Martin; Weltzien, Cornelia; Mahajan, Pramod V
    In situ, continuous and real-time monitoring of respiration (R) and respiratory quotient (RQ) are crucial for identifying the optimal conditions for the long-term storage of fresh produce. This study reports the application of a gas sensor (RMS88) and a modular respirometer for in situ real-time monitoring of gas concentrations and respiration rates of strawberries during storage in a lab-scale controlled atmosphere chamber (190 L) and of Pinova apples in a commercial storage facility (170 t). The RMS88 consisted of wireless O2 (0% to 25%) and CO2 sensors (0% to 0.5% and 0% to 5%). The modular respirometer (3.3 L for strawberries and 7.4 L for apples) consisted of a leak-proof arrangement with a water-containing base plate and a glass jar on top. Gas concentrations were continuously recorded by the RMS88 at regular intervals of 1 min for strawberries and 5 min for apples and, in real-time, transferred to a terminal program to calculate respiration rates ( RO2 and RCO2 ) and RQ. Respiration measurement was done in cycles of flushing and measurement period. A respiration measurement cycle with a measurement period of 2 h up to 3 h was shown to be useful for strawberries under air at 10 °C. The start of anaerobic respiration of strawberries due to low O2 concentration (1%) could be recorded in real-time. RO2 and RCO2 of Pinova apples were recorded every 5 min during storage and mean values of 1.6 and 2.7 mL kg−1 h−1, respectively, were obtained when controlled atmosphere (CA) conditions (2% O2, 1.3% CO2 and 2 °C) were established. The modular respirometer was found to be useful for in situ real-time monitoring of respiration rate during storage of fresh produce and offers great potential to be incorporated into RQ-based dynamic CA storage system.
  • Item
    Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review
    (Amsterdam [u.a.] : Elsevier Science, 2018) Hertwig, Christian; Meneses, Nicolas; Mathys, Alexander
    Background: Dry food products are often highly contaminated, and dry stress-resistant microorganisms, such as certain types of Salmonella and bacterial spores, can be still viable and multiply if the product is incorporated into high moisture food products or rehydrated. Traditional technologies for the decontamination of these products have certain limitations and drawbacks, such as alterations of product quality, environmental impacts, carcinogenic potential and/or lower consumer acceptance. Cold atmospheric pressure plasma (CAPP) and low energy electron beam (LEEB) are two promising innovative technologies for microbial inactivation on dry food surfaces, which have shown potential to solve these certain limitations. Scope and approach: This review critically summarizes recent studies on the decontamination of dry food surfaces by CAPP and LEEB. Furthermore, proposed inactivation mechanisms, product-process interactions, current limitations and upscaling potential, as well as future trends and research needs for both emerging technologies, are discussed. Key findings and conclusions: CAPP and LEEB are nonthermal technologies with a high potential for the gentle decontamination of dry food surfaces. Both technologies have similarities in their inactivation mechanisms. Due to the limited penetration depth of both technologies, product-process interactions can be minimized by maintaining product quality. A first demonstrator with Technology Readiness Level (TRL) 7 for LEEB has already been introduced into the food industry for the decontamination of herbs and spices. Compared with LEEB, CAPP is at the advanced development stage with TRL 5, for which further work is essential to design systems that are scalable to industrial requirements. © 2018 The Authors
  • Item
    Application of Terahertz radiation to soil measurements: Initial results
    (Basel : MDPI, 2011) Dworak, Volker; Augustin, Sven; Gebbers, Robin
    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future.
  • Item
    Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems
    (Amsterdam [u.a.] : Elsevier Science, 2021) Ouatahar, Latifa; Bannink, André; Lanigan, Gary; Amon, Barbara
    Feed management decisions are an important element of managing greenhouse gas (GHG) and nitrogen (N) emissions in livestock farming systems. This review aims to a) discuss the impact of feed management practices on emissions in beef and dairy production systems and b) assess different modelling approaches used for quantifying the impact of these abatement measures at different stages of the feed and manure management chain. Statistical and empirical models are well-suited for practical applications when evaluating mitigation strategies, such as GHG calculator tools for farmers and for inventory purposes. Process-based simulation models are more likely to provide insights into the impact of biotic and abiotic drivers on GHG and N emissions. These models are based on equations which mathematically describe processes such as fermentation, aerobic and anaerobic respiration, denitrification, etc. and require a greater number of input parameters. Ultimately, the modelling approach used will be determined by a) the activity input data available, b) the temporal and spatial resolution required and c) the suite of emissions being studied. Simulation models are likely candidates to be able to better explain variation in on-farm GHG and N emissions, and predict with a higher accuracy for a specific mitigation measure under defined farming conditions, due to the fact that they better represent the underlying mechanisms causal for emissions. Integrated farm system models often make use of rather generic values or empirical models to quantify individual emissions sources, whereas combining a whole set of process-based models (or their results) that simulates the variation in GHG and N emissions and the associated whole farm budget has not been used. The latter represents a valuable approach to delineate underlying processes and their drivers within the system and to evaluate the integral effect on GHG emissions with different mitigation options.
  • Item
    CUDe — Carbon utilization degree as an indicator for sustainable biomass use
    (Basel : MDPI, 2016) Anja Hansen, Anja Hansen; Budde, Jörn; Karatay, Yusuf Nadi; Prochnow, Annette
    Carbon (C) is a central element in organic compounds and is an indispensable resource for life. It is also an essential production factor in bio-based economies, where biomass serves many purposes, including energy generation and material production. Biomass conversion is a common case of transformation between different carbon-containing compounds. At each transformation step, C might be lost. To optimize the C use, the C flows from raw materials to end products must be understood. The estimation of how much of the initial C in the feedstock remains in consumable products and delivers services provides an indication of the C use efficiency. We define this concept as Carbon Utilization Degree (CUDe) and apply it to two biomass uses: biogas production and hemp insulation. CUDe increases when conversion processes are optimized, i.e., residues are harnessed and/or losses are minimized. We propose CUDe as a complementary approach for policy design to assess C as an asset for bio-based production. This may lead to a paradigm shift to see C as a resource that requires sustainable exploitation. It could complement the existing methods that focus solely on the climate impact of carbon.
  • Item
    Soil pH mapping with an on-the-go sensor
    (Basel : MDPI, 2011) Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan
    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH ManagerTM, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH ManagerTM under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH ManagerTM were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.
  • Item
    Profitability of management systems on German fenlands
    (Basel : MDPI, 2016) Rebhann, Marco; Karatay, Yusuf Nadi; Filler, Günther; Prochnow, Annette
    Fens are organic sites that require drainage for agricultural use. Lowering the groundwater level leads to trade-offs between economic benefits and environmental impacts (i.e., CO2 and nutrient emissions). To identify management options that are both environmentally and economically sustainable, a propaedeutic systematic analysis of the costs, income and profit of different land use and management systems on fenlands is necessary. This study provides an overview of the profitability, labor demand and comparative advantages of feasible management systems on German fenlands. Twenty management practices in four land use systems are analyzed. The results indicate that most management systems are profitable only with subsidies and payments for ecosystem services. In addition to sales revenue, these payments are indispensable to promote peat-saving agricultural practices on fenlands. Regarding the labor aspect, intensive management systems caused an increase in working hours per hectare, which may positively affect employment in rural areas. The calculations obtained in this study can be used as a basis for estimations of greenhouse gas (GHG) mitigation costs when management systems are associated with GHG emission values.
  • Item
    Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR)
    (Basel : MDPI, 2020) Erler, Alexander; Riebe, Daniel; Beitz, Toralf; Löhmannsröben, Hans-Gerd; Gebbers, Robin
    Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated.