Search Results

Now showing 1 - 3 of 3
  • Item
    Epitaxial growth and stress relaxation of vapor-deposited Fe-Pd magnetic shape memory films
    (College Park, MD : Institute of Physics Publishing, 2009) Kühnemund, L.; Edler, T.; Kock, I.; Seibt, M.; Mayr, S.G.
    To achieve maximum performance in microscale magnetic shape memory actuation devices epitaxial films several hundred nanometers thick are needed. Epitaxial films were grown on hot MgO substrates (500 °C and above) by e-beam evaporation. Structural properties and stress relaxation mechanisms were investigated by high-resolution transmission electron microscopy, in situ substrate curvature measurements and classical molecular dynamics (MD) simulations. The high misfit stress incorporated during Vollmer-Weber growth at the beginning was relaxed by partial or perfect dislocations depending on the substrate temperature. This relaxation allowed the avoidance of a stressinduced breakdown of epitaxy and no thickness limit for epitaxy was found. For substrate temperatures of 690 °C or above, the films grew in the fee austenite phase. Below this temperature, iron precipitates were formed. MD simulations showed how these precipitates influence the movements of partial dislocations, and can thereby explain the higher stress level observed in the experiments in the initial stage of growth for these films. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO
    (Milton Park : Taylor & Francis, 2008) Edler, Tobias; Buschbeck, Jörg; Mickel, Christine; Fähler, Sebastian; Mayr, S.G.
    Mechanical stress generation during epitaxial growth of Fe–Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning.
  • Item
    Engineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructures
    (College Park, MD : Institute of Physics Publishing, 2008) Schroetter, T.; Zaumseil, P.; Seifarth, O.; Giussani, A.; Müssig, H.-J.; Storck, P.; Geiger, D.; Lichte, H.; Dabrowski, J.
    The integration of alternative semiconductor layers on the Si material platform via oxide heterostructures is of interest to increase the performance and/or functionality of future Si-based integrated circuits. The single crystalline quality of epitaxial (epi) semiconductor-insulator-Si heterostructures is however limited by too high defect densities, mainly due to a lack of knowledge about the fundamental physics of the heteroepitaxy mechanisms at work. To shed light on the physics of stacking twin formation as one of the major defect mechanisms in (111)-oriented fcc-related heterostructures on Si(111), we report a detailed experimental and theoretical study on the structure and defect properties of epi-Si(111)/Y2O 3/Pr2O3/Si(111) heterostructures. Synchrotron radiation-grazing incidence x-ray diffraction (SR-GIXRD) proves that the engineered Y2O3/Pr2O3 buffer dielectric heterostructure on Si(111) allows control of the stacking sequence of the overgrowing single crystalline epi-Si(111) layers. The epitaxy relationship of the epi-Si(111)/insulator/Si(111) heterostructure is characterized by a type A/B/A stacking configuration. Theoretical ab initio calculations show that this stacking sequence control of the heterostructure is mainly achieved by electrostatic interaction effects across the ionic oxide/covalent Si interface (IF). Transmission electron microscopy (TEM) studies detect only a small population of misaligned type B epi-Si(111) stacking twins whose location is limited to the oxide/epiSi IF region. Engineering the oxide/semiconductor IF physics by using tailored oxide systems opens thus a promising approach to grow heterostructures with well-controlled properties. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.