Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Guidance of mesenchymal stem cells on fibronectin structured hydrogel films

2014, Kasten, Annika, Naser, Tamara, Brüllhoff, Kristina, Fiedler, Jörg, Müller, Petra, Möller, Martin, Rychly, Joachim, Groll, Jürgen, Brenner, Rolf E., Engler, Adam J.

Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

Loading...
Thumbnail Image
Item

BioTransporter - effizienter Wirkstofftransport in biologischen Systemen : Verbundprojekt Wirkstofffreisetzungssysteme für den Urogenitaltrakt - DUro, Teilvorhaben: Entwicklung aktiver Mikrosphären zur Freisetzung urologisch relevanter Medikamente ; Schlussbericht

2014, Dittrich, Barbara, Möller, Martin

Die Entwicklung lokaler Drug-Delivery-Systeme im Rahmen des Verbundprojektes addressierte zwei häufige urologische Erkrankungen: die Überaktive Blase (OAB, overactive bladder) und das nicht-muskelinvasiven Blasenkarzinom (NMIBK). Die OAB besitzt mit einer Prävalenz von 17 % in den USA und Europa das Ausmaß einer Volkskrankheit. Aktuelle Ansätze zur intravesikalen lokalen Wirkstoffgabe beinhalten in der Regel die Einspülung von Wirkstofflösungen über einen Katheter in die Blase (Instillation). Hierbei werden z. B. Antimuskarinika gegen die Überaktive Blase (overactive bladder, OAB) oder ein Zytostatika zur Rezidiv- und Progressionsprophylaxe bei nicht-Muskel invasivem Blasenkarzinom (NMIBK) eingesetzt. Das Ziel des Teilvorhabens war die Entwicklung aktiver Mikrosphären und Filamente auf Polymerbasis zur lokalen Freisetzung von urologisch relevanten Wirkstoffen wie beispielsweise Trospiumchlorid oder Mitomycin C in die Blase. Durch die lokale Freisetzung sollen Nebenwirkungen, die bei einer systemischen Darreichung auftreten, vermieden bzw. minimiert werden. Es wurde ein skalierbares Herstellungsverfahren für die Herstellung der aktiven Mikrosphären entwickelt, ausgehend von der Mahlung und Dispersion der Wirkstoffpartikel in der Polymermatrix durch einen Naßmahlprozess, dem eigentlichen Herstellungsverfahren auf der Basis eines Emulsionsprozess und der anschließenden Aufarbeitung zu einem rieselfähigen Pulver durch das Verfahren der Sprühtrocknung. Das Freisetzungsverhalten der ausgewählten Polymermatrices wurde untersucht und eine Optimierung des Systems vorgenommen. Für die Indikation NMIBK wurde ein stark verkleinertes Filament-artiges Drug-Delivery-Systems entwickelt. Die entwickelten aktiven Mikrosphären konnten erfolgreich in das Gesamtsystem eingebaut werden und die entwickelten Drug-Delivery-Systeme wurden erfolgreich in den in-vitro und in-vivo Untersuchungen der Projektpartner angewendet.

Loading...
Thumbnail Image
Item

Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes

2017, Menzel, Sarah, Finocchiaro, Nicole, Donay, Christine, Thiebes, Anja Lena, Hesselmann, Felix, Arens, Jutta, Djeljadini, Suzana, Wessling, Matthias, Schmitz-Rode, Thomas, Jockenhoevel, Stefan, Cornelissen, Christian Gabriel

In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

Loading...
Thumbnail Image
Item

Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling

2017, Al Rawashdeh, Wa'el, Zuo, Simin, Melle, Andrea, Appold, Lia, Koletnik, Susanne, Tsvetkova, Yoanna, Beztsinna, Nataliia, Pich, Andrij, Lammers, Twan, Kiessling, Fabian, Gremse, Felix

Fluorescence-mediated tomography (FMT) is a quantitative three-dimensional imaging technique for preclinical research applications. The combination with micro-computed tomography (μCT) enables improved reconstruction and analysis. The aim of this study is to assess the potential of μCT-FMT and kinetic modeling to determine elimination and retention of typical model drugs and drug delivery systems. We selected four fluorescent probes with different but well-known biodistribution and elimination routes: Indocyanine green (ICG), hydroxyapatite-binding OsteoSense (OS), biodegradable nanogels (NG) and microbubbles (MB). μCT-FMT scans were performed in twenty BALB/c nude mice (5 per group) at 0.25, 2, 4, 8, 24, 48 and 72 h after intravenous injection. Longitudinal organ curves were determined using interactive organ segmentation software and a pharmacokinetic whole-body model was implemented and applied to compute physiological parameters describing elimination and retention. ICG demonstrated high initial hepatic uptake which decreased rapidly while intestinal accumulation appeared for around 8 hours which is in line with the known direct uptake by hepatocytes followed by hepatobiliary elimination. Complete clearance from the body was observed at 48 h. NG showed similar but slower hepatobiliary elimination because these nanoparticles require degradation before elimination can take place. OS was strongly located in the bones in addition to high signal in the bladder at 0.25 h indicating fast renal excretion. MB showed longest retention in liver and spleen and low signal in the kidneys likely caused by renal elimination or retention of fragments. Furthermore, probe retention was found in liver (MB, NG and OS), spleen (MB) and kidneys (MB and NG) at 72 h which was confirmed by ex vivo data. The kinetic model enabled robust extraction of physiological parameters from the organ curves. In summary, μCT-FMT and kinetic modeling enable differentiation of hepatobiliary and renal elimination routes and allow for the noninvasive assessment of retention sites in relevant organs including liver, kidney, bone and spleen. © Ivyspring International Publisher.