Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures

2018, Liedtke, Susann, Grüner, Christoph, Gerlach, Jürgen W., Rauschenbach, Bernd

Metals with a wide range of melting points are deposited by electron beam evaporation under oblique deposition geometry on thermally oxidized Si substrates. During deposition the sample holder is cooled down to 77 K. It is observed that all obliquely deposited metals grow as tilted, high aspect ratio columns and hence with a similar morphology. A comparison of such columns with those deposited at room temperature (300 K) reveals that shadowing dominates the growth process for columns deposited at 77 K, while the impact of surface diffusion is significantly increased at elevated substrate temperatures. Furthermore, it is discussed how the incidence angle of the incoming particle flux and the substrate temperature affect the columnar tilt angles and the porosity of the sculptured thin films. Exemplarily for tilted Al columns deposited at 77 K and at 300 K, in-plane pole figure measurements are carried out. A tendency to form a biaxial texture as well as a change in the crystalline structure depending on the substrate temperature is found for those films.

Loading...
Thumbnail Image
Item

Competition between proton transfer and intermolecular Coulombic decay in water

2018, Richter, Clemens, Hollas, Daniel, Saak, Clara-Magdalena, Förstel, Marko, Miteva, Tsveta, Mucke, Melanie, Björneholm, Olle, Sisourat, Nicolas, Slavíček, Petr, Hergenhahn, Uwe

Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron–electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40–50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12–52 fs for small water clusters.

Loading...
Thumbnail Image
Item

Facile and scalable synthesis of sub-micrometer electrolyte particles for solid acid fuel cells

2018, Lohmann-Richters, F.P., Odenwald, C., Kickelbick, G., Abel, B., Varga, Á.

Nanostructuring fuel cell electrodes is a viable pathway to reach high performance with low catalyst loadings. Thus, in solid acid fuel cells, small CsH2PO4 electrolyte particles are needed for the composite powder electrodes as well as for thin electrolyte membranes. Previous efforts have resulted in significant improvements in performance when using sub-micrometer CsH2PO4 particles, but laborious methods with low throughput were employed for their synthesis. In this work, we present a simple, robust, and scalable method to synthesize CsH2PO4 particles with diameters down to below 200 nm. The method involves precipitating CsH2PO4 by mixing precursor solutions in alcohol in the presence of a dispersing additive. The influence of the concentrations, the batch size, the solvent, and the mixing process is investigated. The particle size decreases down to 119 nm with increasing amount of dispersing additive. Mixing in a microreactor leads to a narrower particle size distribution. The particle shape can be tuned by varying the solvent. The ionic conductivity under solid acid fuel cell conditions is 2.0 × 10-2 S cm-1 and thus close to that of CsH2PO4 without dispersing additive.

Loading...
Thumbnail Image
Item

Synthesis of High Crystalline TiO2 Nanoparticles on a Polymer Membrane to Degrade Pollutants from Water

2018-9-5, Fischer, Kristina, Schulz, Paulina, Atanasov, Igor, Abdul Latif, Amira, Thomas, Isabell, Kühnert, Mathias, Prager, Andrea, Griebel, Jan, Schulze, Agnes

Titanium dioxide (TiO2) is described as an established material to remove pollutants from water. However, TiO2 is still not applied on a large scale due to issues concerning, for example, the form of use or low photocatalytic activity. We present an easily upscalable method to synthesize high active TiO2 nanoparticles on a polyethersulfone microfiltration membrane to remove pollutants in a continuous way. For this purpose, titanium(IV) isopropoxide was mixed with water and hydrochloric acid and treated up to 210 °C. After cooling, the membrane was simply dip-coated into the TiO2 nanoparticle dispersion. Standard characterization was undertaken (i.e., X-ray powder diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, water permeance, contact angle). Degradation of carbamazepine and methylene blue was executed. By increasing synthesis temperature crystallinity and photocatalytic activity elevates. Both ultrasound modification of nanoparticles and membrane pre-modification with carboxyl groups led to fine distribution of nanoparticles. The ultrasound-treated nanoparticles gave the highest photocatalytic activity in degrading carbamazepine and showed no decrease in degradation after nine times of repetition. The TiO2 nanoparticles were strongly bound to the membrane. Photocatalytic TiO2 nanoparticles with high activity were synthesized. The innovative method enables a fast and easy nanoparticle production, which could enable the use in large-scale water cleaning.

Loading...
Thumbnail Image
Item

Charge Separating Microfiltration Membrane with pH-Dependent Selectivity

2018-12-20, Breite, Daniel, Went, Marco, Prager, Andrea, Kuehnert, Mathias, Schulze, Agnes

Membrane filters are designed for selective separation of components from a mixture. While separation by size might be the most common approach, other characteristics like charge can also be used for separation as presented in this study. Here, a polyether sulfone membrane was modified to create a zwitterionic surface. Depending on the pH value of the surrounding solution the membrane surface will be either negatively or positively charged. Thus, the charged state can be easily adjusted even by small changes of the pH value of the solution. Charged polystyrene beads were used as model reagent to investigate the pH dependent selectivity of the membrane. It was found that electrostatic forces are dominating the interactions between polystyrene beads and membrane surface during the filtration. This enables a complete control of the membrane’s selectivity according to the electrostatic interactions. Furthermore, differently charged beads marked with fluorescent dyes were used to investigate the selectivity of mixtures of charged components. These different components were successfully separated according to their charged state proving the selectivity of the invented membrane.

Loading...
Thumbnail Image
Item

Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin

2018, Siewert, F., Löchel, B., Buchheim, J., Eggenstein, F., Firsov, A., Gwalt, G., Kutz, O., Lemke, St., Nelles, B., Rudolph, I., Schäfers, F., Seliger, T., Senf, F., Sokolov, A., Waberski, Ch., Wolf, J., Zeschke, T., Zizak, I., Follath, R., Arnold, T., Frost, F., Pietag, F., Erko, A.

Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm−1 and 1200 lines mm−1. A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

Loading...
Thumbnail Image
Item

TiO2 as Photosensitizer and Photoinitiator for Synthesis of Photoactive TiO2-PEGDA Hydrogel Without Organic Photoinitiator

2018-8-7, Glass, Sarah, Trinklein, Betsy, Abel, Bernd, Schulze, Agnes

The replacement of potentially toxic photoinitiators is of increasing interest regarding the synthesis of biomaterials by photopolymerization. Therefore, we present a new method for the preparation of UV polymerized hydrogels with TiO2 as a photoinitiator. Titania is known to be an excellent photoactive compound which is non-toxic, inert, and cheap. The so-formed hydrogels possess excellent mechanical properties, a high swelling ratio, and high thermal stability. Furthermore, no TiO2 is released from the hydrogels. Thus, the material is highly suitable for medical applications. Additionally, the present TiO2 in the hydrogels remains photoactive as demonstrated by degradation of methylene blue. This enables the application of TiO2-hydrogels in photodynamic therapy.